
BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 4, EKİM 2021 391

Organization of Variation-Based Personal Genetic Data

with Document-Based No-Sql Database
Araştırma Makalesi/Research Article

 Onur ÇAKIRGÖZ

1

, Süleyman SEVİNÇ
2

1Computer Engineering Department, Bartın University, Bartın, Turkey

2Labenko Bilişim A. Ş., İzmir, Turkey

onurcakirgoz@bartin.edu.tr, suleysevinc@gmail.com

(Geliş/Received:07.04.2021; Kabul/Accepted:07.09.2021)

DOI: 10.17671/gazibtd.910465

Abstract— Variation-based personal genetic data are at the center of many clinical practices and many studies in

bioinformatics. Unfortunately, almost all existing methods developed to organize personal genetic data are not variation-

based and these methods have not been tested with a large amount of real data. In applications requiring variation-based

data, an intense data conversion problem arises when these existing methods are used. On the other hand, the few solutions

available that are variation-based are not entirely structural, and they do not meet the needs of daily practice. In this study,

a document-based No-SQL database and related designs are proposed for the organization of variation-based personal

genetic data. Our structural solution contains many classes, collections and indexes, and it supports all types of variations

(both structural and non-structural). In this database, the variation data of 2504 people published by the 1000 Genomes

Project were stored smoothly and efficiently. The spaces occupied by personal genetic data in primary memory and hard

disk were analyzed. In addition, some queries that might be frequently used by clinical applications were run and the

response times of the database was calculated. The results of the analyzes show that the proposed method provides very

important gains.

Keywords— no-sql database, personal genome database, personal genetic data, human genome variations, 1000 genomes

project

Varyasyon-Bazlı Kişisel Genetik Verilerin Doküman-

Tabanlı No-Sql Veri Tabanı ile Organizasyonu

Özet— Varyasyon-bazlı kişisel genetik veriler çoğu klinik uygulamanın ve biyoinformatikteki çoğu çalışmanın

merkezinde bulunmaktadır. Ne yazık ki, kişisel genetik verileri organize etmek için geliştirilen mevcut yöntemlerin

neredeyse tamamı varyasyon-bazlı değildir ve bu yöntemler büyük miktardaki gerçek verilerle test edilmemiştir.

Varyasyon-bazlı verilere ihtiyaç duyan uygulamalarda, bu mevcut yöntemler kullanıldığında, yoğun bir veri dönüştürme

problemi ortaya çıkmaktadır. Öte yandan, az sayıdaki mevcut varyasyon-bazlı çözümler tamamıyla yapısal değildir ve

günlük pratiğin gereksinimlerini karşılamamaktadır. Bu çalışmada, varyasyon-bazlı kişisel genetik verilerin

organizasyonu için doküman-tabanlı No-SQL veri tabanı ve ilgili tasarımlar önerilmektedir. Yapısal çözümümüz çok

sayıda sınıf, koleksiyon ve indeks içermektedir ve tüm varyasyon tiplerini (yapısal ve yapısal olmayan) desteklemektedir.

Bu veri tabanında, 1000 Genom Projesi tarafından yayınlanan 2504 kişinin varyasyon verileri sorunsuz ve verimli bir

şekilde depolanmıştır. Kişisel genetik verilerin ana bellek ve sabit diskte kapladığı alanlar incelenmiştir. Ayrıca, klinik

uygulamaların sıklıkla kullanabileceği bazı sorgular çalıştırılmış ve veri tabanının yanıt süreleri hesaplanmıştır.

Analizlerin sonuçları, önerilen yöntemin çok önemli kazanımlar sağladığını göstermektedir.

Anahtar Kelimeler— no-sql veritabanı, kişisel genom veritabanı, kişisel genetik veriler, insan genomu varyasyonları,

1000 genom projesi

https://orcid.org/0000-0002-9347-1105
mailto:onurcakirgoz@bartin.edu.tr
mailto:suleysevinc@gmail.com
https://orcid.org/0000-0001-9052-5836

392 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 4, EKİM 2021

1. INTRODUCTION

The development of faster and cheaper sequencing

technologies has made possible the personalized human

genomics. Thanks to these technological advances, many

personal diploid human genome sequences were created.

At the same time, our knowledge of individual genetic

variations has increased significantly. On the other hand,

personal genome sequencing has now become a common

part of medical practice [1]. Both the whole-genome and

exome sequencing reveal the genetic causes of diseases and

the treatment methods are determined in the light of this

information [2].

Very large-scale sequencing projects have been

implemented by utilizing next generation sequencing

technologies. For example, the 1000 Genome Project [3]

[4] was launched in 2008 and is a very large international

cooperation project. At the end of the project, a large

catalog of human genomic variations was created. Maps of

genetic variations have been published using the genetic

data of 2504 individuals selected from 26 different

populations [5, 6]. The variation data were published by

1000 Genomes Project as VCF [7] and BCF [8] files. The

total storage space used for the project is more than 500

TB. Approximately 2 years after the 1000 Genome Project,

the UK10K project [9] [10] was launched in July 2010 by

the Wellcome Trust Sanger Institute, the largest

contributor to the Human Genome Project [11]. The main

objective of the UK10K project is to reveal more clearly

the association between rare genetic variations and

diseases. From this perspective, it can be said that the

UK10K project contributed more than the 1000 Genome

Project, since the output of the UK10K project contains

both genotype and phenotype knowledge. Another project

initiated after the UK10K project is the Encyclopedia of

DNA elements (ENCODE) project [12]. Within the scope

of this project, ChIP-seq and RNA-seq assays were carried

out in human and mouse and many experimental data sets

were made available. Finally, the large-scale sequencing

project that must be mentioned is the Cancer Genome Atlas

(TCGA) project [13, 14, 15]. The Cancer Genome Atlas

(TCGA) project was carried out to explore genomic

changes in human cancer. Through the data portal [16], it

provides access to clinical information as well as the tumor

genome of many cases of 33 different types of cancer.

Next-generation high-throughput sequencing platforms are

generating massive amounts of genetic data. In parallel, a

number of tools have been developed to work with these

genetic data generated by next-generation sequencing

devices. These tools can be actually divided into two,

basically. In the first section, read based aligners exist like

MAQ [17], BWA [18], and SOAP [19]. In the second

section, single nucleotide polymorphism and structural

variation detection tools exist like BreakDancer [20],

VarScan [21], and MAQ. Shortly after these tools, the

SAM file specification [22] emerged as the platform-

independent standard format for storing next-generation

sequencing data. After the development of SAM, [23]

proposed the Genome Analysis Toolkit (GATK), a

structured programming framework, which takes

advantage of this common input format to simplify the up-

front coding costs for end users. GATK uses the functional

programming philosophy of MapReduce [24] and eases the

development of analysis tools for next-generation DNA

sequencers. On the other hand, a variety of genotyping and

variation formats were proposed, including common

emerging SNP formats like GLF and VCF [25].

Numerous compression algorithms have also been

proposed to reduce the size of genetic data. BioCompress

[26] is the first compression algorithm developed for the

compression of DNA sequences. In the BioCompress

algorithm, each nucleotide base is represented and encoded

by 2 bits. Besides, BioCompress detects reverse

complement repeats. The two compression algorithms

developed after BioCompress, Cfact [27] and Off-line [28],

are actually variations of BioCompress. Both algorithms

work in rounds, greedily replacing duplicate text with

shorter codes. Then, GenCompress [29] showed that by

considering approximate repeats, the results could be

improved. Along with the GenCompress algorithm, most

DNA compression algorithms are built on various

variations of approximate repeat detection. The biggest

drawback of many of these early DNA compression

algorithms is that they can only compress small files. Now,

next-generation sequencing devices can sequence many

individual genomes from the same species. Therefore,

recent algorithms have addressed the problem of

compressing DNA data from the same species. E-mail

attachment [30] compresses variation data from human

genomes and encodes the small variations with respect to

the human reference sequence and known variations

recorded in a SNP database. This method is a four-step

method and uses multiple compression techniques

together. They applied the method to James Watson’s (JW)

genome [31], and managed to compress it to 4 MB. As with

other compression methods, the disadvantage of this

method is that it does not contain index. Accordingly, it

does not support random access. Other successful and well-

known compression algorithms are RLZ [32], XM [33],

and RLCSA [34]. One of the best single sequence DNA

compression algorithms is XM, but it takes hours for a

single chromosome sequence to compress. RLZ specializes

in the compression of large, related DNA datasets. The

total dataset of three human genome sequences can be

represented in 755 MB with RLZ and 3835 MB with

RLCSA.

Hadoop [35] and MapReduce [36] frameworks have also

been adopted by a few specific bioinformatics tools [37,

38, 39, 40]. In particular, SparkSeq [39] has been proposed

as general-purpose tool for processing of DNA and RNA

sequence data using the Apache Spark engine [41].

Genome Query Language (GQL) [42, 43] is another well-

known structural approach for processing genomic data.

GQL is based on genome query algebra and uses an SQL

extension. Later, GenoMetric Query Language (GMQL)

[40], which is based on Hadoop framework and Apache Pig

platform, has been proposed to query and compare multiple

and heterogeneous genomic datasets for biomedical

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 4, EKİM 2021 393

knowledge discovery. GMQL is very similar to GQL, but

GQL start from the reads (raw data) of NGS machines,

whereas GMQL starts from processed datasets.

The recent study [44] that uses relational database to store

variation-based personal genetic data is the closest to our

study. In this study, various external data formats were

designed to hold variations and genotypes, and all

genotypes of a chromosome were (collectively) recorded

in the database in the Varbinary binary format and in a

compressed form. That is, the relational database alone was

not sufficient to represent and store personal genetic data.

Naturally, this method does not allow complex SQL

queries, most transactions are handled at the application

layer.

In this study, a solution was developed for the systematic

storage and querying of variation-based personal genetic

data needed by most clinical practice and most studies in

bioinformatics. For this purpose, a no-sql database was

used and many classes, collections and indexes were

designed. Our solution supports all variation types. The

sections of the article are as follows: In the second section,

firstly the data set used in the study was introduced, then

the designed collections, classes and indexes were

explained. In the third chapter, the analyzes and analysis

results were mentioned, the results were discussed, and at

the end of the chapter, our method is compared with a

recent and successful method. Final remarks are given in

the last section.

2. MATERIALS AND METHODS

In this section, we described the materials and methods

required to create and examine the database mentioned in

this study. We used a document-based No-SQL database

(Mongo) and created 5 collections, 15 classes and many

indices for the organization of variation-based personal

genetic data. In this database, the variation data of 2504

people published by the 1000 Genomes Project were stored

smoothly and efficiently. Then, the spaces occupied by

personal genetic data in primary memory and hard disk

were analyzed. In addition, some queries that might be

frequently used by clinical applications were run and the

response times was calculated.

2.1. Dataset

In this study, we used the large catalogue of human

genomic variations, which was created by the 1000

Genomes Project and published as BCF files [8]. This large

catalogue includes variation-based personal genetic data of

2504 individuals selected from 26 different populations.

2.2. Database Schema

The No-SQL database schema, designed to hold variation-

based personal genetic data in Mongo database, appears in

Figure-1. As shown in Figure-1, the database includes 5

collections. Each of these collections will be discussed

separately in the following sections

Figure 1. No-SQL database schema

394 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 4, EKİM 2021

2.3. Collections of Genomes Database

Individuals Collection

The "Individuals" collection is utilized to store individuals’

information and the document type of this collection is

"IndividualMD" class. The fields of the "IndividualMD"

class and the descriptions of these fields are indicated in

detail in Table-1. The fields of the "IndividualMD" class

were determined in a way to be compatible with the data of

1000 Genomes Project. Therefore, other fields can be

added to this class according to some characteristics (e.g.

coverage, size, purpose, etc.) of the applications. The value

of the "_id" field, which uniquely identifies the documents

(individuals) within the “Individuals” collection, is

assigned to the "PID" field of the “RegionMD” class. In

this way, the link between “Individuals” and

“Personal_Genomes” collections is established.

Table 1. The fields of “IndividualMD” class

Field

Name

Data

Type

Explanation

_id ObjectId Document id (primary

key)

Name string Name of the individual

Family_ID string Family_ID of the

individual

Population string Population of the

individual

Gender string Gender of the individual

The two indexes created for the “Individuals” collection

are shown in Table-2. The first index ("_id_") is the default

index created by Mongo database. This index indexes

documents (individuals) in increasing order depending on

the "_id" field. The second index is created by us. This

index indexes individuals in increasing order according to

their names. In this way, the data regarding any individual

can be obtained from the “Individuals” collection in a very

short time.

Table 2. The indexes of “Individuals” collection

Index Name Keys and Order

id { "_id" : increasing } (Default index)

Name_1 { "Name" : increasing }

Ref_Chr_Info Collection (Reference Chromosome

Information)

The "Ref_Chr_Info" collection holds basic information

about reference chromosomes and the document type of

this collection is the “Ref_Chr_InfoMD” class. The fields

of the "Ref_Chr_InfoMD" class and the explanations of

these fields are specified in detail in Table-3. The

"Chr_No" field takes the values of 23 and 24 for the X and

Y chromosomes, respectively. On the other hand, the

"Hga" field shows the assembly of the human reference

genome. These two fields are the basic fields that separate

any “Ref_Chr_InfoMD” document from other documents

of the “Ref_Chr_Info” collection. When referring to a

personal genotype, we need to specify which reference

chromosome (which assembly) was used for the alignment

process. Accordingly, the value of the “_id” field of the

“Ref_Chr_InfoMD” document is assigned to the

"R_C_ID" field of the “RegionMD” class (This class will

be described later.). In this way, a link between the

“Ref_Chr_Info” collection and the “Personal_Genomes”

collection is established.

Table 3. The fields of “Ref_Chr_InfoMD” class

Field

Name

Data

Type

Explanation

_id ObjectId Document id (primary key)

Chr_No int Chromosome number

Hga string Human genome assembly

SP int Start position of the

chromosome

EP int End position of the

chromosome

Len int Length of the chromosome

The two indexes created for the “Ref_Chr_Info” collection

appear in the Table-4. The first of these indices is created

by default by Mongo database. The second index indexes

the chromosomes according to the "Hga" and "Chr_No"

fields (first by "Hga" values, and then, within each "Hga",

by "Chr_No" values).

Table 4. The indexes of “Ref_Chr_Info” collection

Index Name Keys and Order

id { "_id" : increasing } (Default

index)

Hga_1_Chr_No_1 { "Hga" : increasing, "Chr_No" :

increasing }

Ref_Seq Collection (Reference Sequences)

"RefSeq" is a collection which is created to hold sequences

(bases) of reference chromosomes and the class

“Ref_SeqMD” is the document type of this collection.

Here, the chromosome sequences are separated into

regions that do not exceed the maximum document size

specified by the Mongo database and each region is saved

as a document into the collection. All fields of the

“Ref_SeqMD” class and the properties of these fields are

shown in Table-5.

Table 5. The fields of “Ref_SeqMD” class

Field

Name

Data

Type

Explanation

_id ObjectId Document id

R_C_ID ObjectId The id of the document

(including the ref. chr.) in the

“Ref_Chr_Info” collection

SP int Start position of the region

EP int End position of the region

Len int Length of the region

Seq string The sequence of the region

defined by “SP” and “EP”.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 4, EKİM 2021 395

The "Seq" field of the Ref_SeqMD class stores the

sequence. Here, the maximum sequence length that a

document can hold was determined to be 1000000, by

considering the maximum document size and query

performance criterion. On the other hand, the information

of which reference chromosome (chromosome number and

assembly) the sequences belong to must also be kept

somewhere and the "R_C_ID" field is used for this

purpose. Accordingly, the value of the "_id" field of the

"Ref_Chr_InfoMD" document is assigned to the

"R_C_ID" field of the "Ref_SeqMD" document. In this

way, the connection between the “Ref_Chr_Info”

collection and the “Ref_Seq” collection is established.

The two indexes created for the "Ref_Seq" collection are

shown in Table-6. The first of these indices is the index,

which is created by default. The second index indexes the

documents (chromosome regions) according to the

"R_C_ID" and "SP" fields (first by "R_C_ID" values, and

then, within each "R_C_ID", by "SP" values). In this way,

any desired region(s) of any chromosome can be fetched

quickly from the database.

Table 6. The indexes of “Ref_Seq” collection

Index Name Keys and Order

id { "_id" : increasing } (Default

index)

R_C_ID_1_SP_1 { "R_C_ID" : increasing, "SP" :

increasing }

Generic Variations Collection

In a database developed for the storage of variation-based

personal genetic data and for querying related data in

clinical applications, a collection that will hold generic

variations is one of the indispensable components.

Naturally, this data needs to be systematically taken from

the database along with personal genetic data. In line with

the requirements, the "Generic_Variations" collection was

developed. The document type of this collection is the

"Gen_VarMD" class and the fields of this class and the

explanations of these fields are detailed in Table-7.

The second field of Table-7, "R_C_ID", is utilized for the

purpose of holding the information of which reference

chromosome (chromosome number and assembly) the

respective variation belongs to. Accordingly, the value of

the "_id" field of the "Ref_Chr_InfoMD" document is

assigned to the "R_C_ID" field of the "Gen_VarMD"

document. The next five fields are the basic information

that defines the variation. In fact, these are all

indispensable information; but when a novel variation is

detected, the field "Var_ID" may be null until this variation

is given a unique id. Other information about the variation

is stored in the "Info" field, and the data type of this field

is the "Gen_Var_InfoMD" class, as can be seen from

Table-7. "Gen_Var_InfoMD" class and

"Gen_Var_InfoExtMD" class, derived from this class, will

be explained later.

Table 7. The fields of “Gen_VarMD” class

Field

Name

Data Type Explanation

_id ObjectId Document id

R_C_ID ObjectId The id of the

document (including

the ref. chr.) in the

Ref_Chr_Info"

collection

Var_ID string The ID of the variation

Type char The type of the

variation ('N' for Non-

structural, 'S' for

structural variations.)

Pos int The start position of

the variation on the

chromosome

Ref string Reference allele

Alt string Alternate alleles

Info Gen_Var_InfoMD Extra information field

The indexes created for the "Generic_Variations"

collection appear in Table-8. In some clinical operations,

variation's id, the chromosome to which it belongs, and the

position information are generally available in our hands.

Moreover, searches also center upon these fields. Moving

from here, the second and third indices were designed in

this direction. Notice that the third index indexes the

variations according to their IDs ("Var_ID" field), and the

type of this index is hash.

Table 8. The indexes of “Generic_Variations” collection

Index Name Keys and Order

id { "_id" : increasing } (Default

index)

R_C_ID_1_Pos_1 { "R_C_ID" : increasing, "Pos" :

increasing }

Var_ID_H { "Var_ID" : Hashed}

Personal_Genomes Collection (Variation-Based Personal

Genotypes)

The “Personal_Genomes” collection is the most basic and

most significant collection of the “Genomes” database.

This collection is utilized to hold variation-based genetic

data of individuals (genotypes/haplotypes concerning the

variations detected on the genome of the person). To avoid

exceeding the maximum document size of 1000 kB, and

not to reduce query performance, the chromosomes are

divided into regions. The document type of the

“Personal_Genomes” collection is the “RegionMD” class.

As is known, there is no restriction on the number of

elements of an array that any Mongo database document

has (Provided that the maximum document size is not

exceeded). In this collection, each document (region)

contains a maximum of 2500 genotypes. The 2500

genotypes restriction mentioned here is a value determined

by us, considering the maximum document size and search

performance. The fields of the "RegionMD" class are given

in Table-9.

396 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 4, EKİM 2021

It can be seen from the table that there are two relations

(between "Personal_Genomes" and "Ref_Chr_Info" and,

between "Personal_Genomes" and "Individuals"

collections). Thanks to both the fields that make up these

relationships and the other fields, the “RegionMD”

document holds genotypes/haplotypes regarding the

variations that have been identified in any region of a

person's any chromosome. The "GTs" field of this

document stores genotypes and the data type of this field is

“Variation_PositionMD” array. "Variation_PositionMD"

class and other related classes will be explained in the

following section.

Table 9. The fields of “RegionMD” class

Field

Name

Data Type Explanation

_id ObjectId Document id

R_C_ID ObjectId The id of the document

(including the ref. chr.) in the

“Ref_Chr_Info” collection

PID ObjectId The id of the document

(including individual) in the

“Individuals” collection

SP int Start position of the region

EP int End position of the region

GTs Variation_

PositionMD[]

The array storing the

genotypes/haplotypes of the

individual

In clinical applications that process/query variation-based

personal genetic data, the largest number of queries will be

called for this collection and this is the collection that

occupies the most space. Therefore, the indices designed

for the "Personal_Genomes" collection are important. In

the light of this information, three indexes created for the

"Personal_Genomes" collection are shown in Table-10.

Table 10. The indices of “Personal_Genomes” collection

Index Name Keys and Order

id { "_id" : increasing }

(Default index)

PID_1_R_C_ID_1_

SP_1_EP_1

{ "PID" : increasing,

"R_C_ID" : increasing,

"SP" : increasing, "EP" :

increasing }

PID_1_R_C_ID_1_

SP_1_EP_1_GTs.Pos_1

{ "PID" : increasing,

"R_C_ID" : increasing,

"SP" : increasing, "EP" :

increasing, "GTs.Pos" :

increasing }

The first index ("_id_") is the default index created by

Mongo database. The second and the third indices were

designed by us. The purpose of designing these two indices

is to find the genotype/genotypes in any region of any

chromosome of a person very quickly and to fetch this data

from the database. In fact, although these two indices are

quite similar to each other, there is one difference between

them. In addition to the second index, the third index

indexes the data according to the "Pos" property of the

"GTs" field at the last stage. At this point, one might ask:

"If the third index fully covers the second index, why is the

second index needed?". The answer to this question will be

given in the next section when comparing the query

performances and the space requirements of the indices.

2.4. Other Classes

In the previous chapter, the “Genomes” database designed

to hold variation-based personal genetic data, the

collections that make up this database and the document

types of these collections were described. It was also stated

that the "Personal_Genomes" collection is the most

important collection among these collections, and it holds

personal genetic data. But, the “Variation_PositionMD”

class, which is the data type of the "GTs" field that holds

personal genotypes and, other related classes were not

mentioned. Accordingly, the classes

“Variation_PositionMD”, "Gen_Var_InfoMD" and

"Gen_Var_InfoExtMD" will be explained in detail in this

section.

Class Design for Personal Variations (Haplotypes)

A total of five classes were designed to hold a variation

(personal haplotype) detected at any position of any

chromosome of a person. The designed classes, and

inheritance and polymorphism relations between these

classes are shown in Figure-2. As can be seen from the

figure, "VariationMD" is the class (super class) at the top

of this hierarchy. The "VariationMD" class has a single

field, and that field holds the type of the variation. This

field takes a total of 11 different values in a way to support

all variation types. To that end, three characters are utilized

for the non-structural variations, whereas eight characters

are utilized to represent the structural variations.

Figure 2. Class design for variations

The class, which is designed to hold a variation (haplotype)

of type small insertion or deletion, is "Small_IndelsMD".

This class is derived from the “VariationMD” class and it

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 4, EKİM 2021 397

has two fields, except for the "VT" field of the

"VariationMD" class. The first field ("VL") is of type

integer and holds the length of the variation (haplotype).

What we mean here by the term "variation length" is the

difference between the length of the "ALT" field and the

length of the reference allele. In the variations of type short

insertion, since the length of the alternate allele is greater

than the length of the reference allele, the value of the "VL"

field is always positive. In the variations of type short

deletion, the situation is exactly the opposite, that is, the

value of the "VL" field is always negative. The "VL" field

is actually one of the key fields and is also used for a

significant operation, such as obtaining the raw sequence

data using genotypes/haplotypes of an individual. Thanks

to this field, the total change in a particular region can be

easily found. Also, raw sequence data can be obtained, by

creating an array with length (length of the particular

region + total change). On the other hand, the second field

("ALT") is used to hold the haplotype and it is naturally of

type string.

The class, which is designed to hold a variation (haplotype)

of type substitution, is "SubstitutionMD". As in the

"Small_IndelsMD" class, this class is also derived from the

“VariationMD” class. The "SubstitutionMD" class has

only one field, except for the "VT" field of the

"VariationMD" class. The name of this single field is

"ALT" and it is used for the same purpose as the "ALT"

field of the "Small_IndelsMD" class. In the operation of

obtaining raw sequence data by using personal

genotypes/haplotypes, the "SubstitutionMD" documents

are not considered when calculating the total length

change.

Two classes "Variation_StructuralMD" and

"Variation_Structural_ExtendedMD" were designed to

store the structural variations. As can be seen from Figure-

2, the class "Variation_structuralMD" is derived from the

class "VariationMD", whereas the class

"Variation_Structural_ExtendedMD" is derived from the

class "Variation_StructuralMD". The class

“Variation_StructuralMD” was designed to store five

different structural variations: CNV, DEL, DUP, INS:MT

and INV. On the other hand, except for the "VT" field of

the "VariationMD" class, “Variation_StructuralMD” has

three attributes and these are “ID”, “CS” and “end”. These

attributes are used to store id of the structural variation,

source call set, and end coordinate of the variation,

respectively.

The "Variation_Structural_ExtendedMD" class was

designed to hold structural variations of types

INS:ME:ALU, INS:ME:LINE1 and INS:ME:SVA. This

class has six fields, except for the "VT" field of the

"VariationMD" class and the three fields defined in the

"Variation_StructuralMD" class. The names of these fields

are “Svlen” (int), “Tsd” (string), “ME” (string), “Start”

(int), “Mobile_end” (int) and “Polarity” (char). According

to the order, these fields store the length of the structural

variation (difference in length between REF and ALT),

precise target site duplication for bases, mobile element

name, start and end positions, and the polarity.

Class Design for Personal Genotypes

In the previous section, considering only one of the

chromosome pair, document types were described that can

hold the variation (haplotype) on any position of the

chromosome. In this section, document types will be

explained that can express the variation on any position,

taking both chromosomes of the chromosome pair (both

alleles) into consideration. Also, since males have single X

and single Y chromosomes, the document types that can

store the variations on these chromosomes were also

designed. Consequently, a total of 5 classes are used to

hold the personal genotype (or haplotype for X and Y

chromosomes of males) at any position. The designed

classes, and inheritance and polymorphism relations

between these classes are shown in Figure-3. As seen from

the figure, “Variation_PositionMD” is the class (super

class) at the top of this hierarchy. The class

"Variation_PositionMD" has a single field, which is an

integer variable representing the position of the variation

on the chromosome. It was mentioned in the

"Personal_Genomes" collection that the "GTs" field of the

"RegionMD" class holds the variation-based personal

genotypes/haplotypes and that the data type of this field is

the "Variation_PositionMD" array. Since

"Variation_PositionMD" is a super class, objects of all

other classes descended from this class can be kept in the

"GTs" field.

Figure 3. Class design for genotypes

The “Diploid_VariationMD” is one of the classes derived

from the "Variation_PositionMD" class and, as the name

implies, it is used in diploid situations. Here, what is meant

by diploid situations are autosomal chromosomes and sex

chromosomes of females. Except for the "Pos" field

inherited from the "Variation_PositionMD" class, the

398 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 4, EKİM 2021

"Diploid_VariationMD" class has two fields. The field

with the name "GT" is an array of type "VariationMD" and

thus, it can hold the variations (genotype) on both alleles.

Thanks to the fact that the class "VariationMD" is a super

class and that the other classes representing the variation

types derive from this class, the "Diploid_VariationMD"

class supports all possible cases. The second field (“I”) of

this class gives us information about the "GT" field. When

both alleles are considered, the possibilities that can

emerge can be expressed as: The existence of the variation

in only first allele, the existence of the variation in only

second allele, the existence of the same variation in both

alleles, and finally, the existence of distinct variations in

both alleles. Apart from these four main cases, in some

structural variation types (CNV, DEL, DUP), same

variation whose only CNA values are different can be

observed in both alleles. Consequently, there are five

different cases in total. Accordingly, the "I" field can take

five different values to support these five different possible

cases. The field “I” takes the values 0, 1, 2, 3 and 4 for the

cases above, respectively. There is an important reason for

adding the "I" field: the idea of saving space. In the case

that the same variation is seen on both alleles, only one of

these variations is saved in the "GT" field and "2" is

assigned to the "I" field to express this case. Also, the

number of the occurrences of the same variation on both

alleles is very huge. Therefore, substantial space savings

are achieved. In addition, the value of the "I" field directly

indicates the genotype status. Therefore, regardless of the

"GT" field, information about the alleles (e.g.

homozygote/heterozygote) can be obtained.

"Haploid_VariationMD" is another class derived from the

"Variation_PositionMD" class and it is used to keep the

variations (haplotypes) detected on the sex chromosomes

of males. Except for the "Pos" field inherited from super

class, "Haploid_VariationMD" class has only one field

("HT"), and this field's data type is "VariationMD". Since

male sex chromosomes are not diploid, "HT" field can hold

a variation on any position in a single allele. As in

"Diploid_VariationMD", the "Haploid_VariationMD"

class can hold all variation types.

As stated before, in some structural variation types (CNV,

DEL, DUP), same variation whose only CNA values are

different can be observed in both alleles. The classes

"Diploid_Variation_CNAMD" and

"Haploid_Variation_CNAMD" were developed to store

such a genotype/haplotype and they are utilized only for

the three types of structural variations specified above. In

fact, these two classes are equivalent. The

"Diploid_Variation_CNAMD" class is used in diploid

cases, whereas the "Haploid_Variation_CNAMD" class is

used in haploid cases. Apart from the fields inherited from

the upper classes, the class "Diploid_Variation_CNAMD"

has only one field (“CNA” of type sbyte[]). As might be

expected, this field holds the CNA (Copy Number Allele)

values. Finally, the "Haploid_Variation_CNAMD" class

represents the structural variations (CNV, DEL and DUP)

detected in male sex chromosomes.

3. RESULTS AND DISCUSSION

Testing the database and indexes with real genetic data and

evaluating the results of the analysis are just as valuable

and important as designing. For this purpose, the variation

data published by 1000 Genome Project was used. The

various physical properties of the computer, where the

database is installed and which was used to test the system,

are shown in Table-11. In addition, other

parameters/technologies related to the database are as

follows: “MongoDB Community Edition 3.4” version of

mongo database was used. Besides, “The official

MongoDB C#/.NET Driver version 2.3” was selected as

the driver.

Table 11. The properties of the test computer

Property Value

Computer

name-version

Asus K55VJ-SX077D

Operating

system

Windows 8.1 Pro 64 bit

Processor type

and speed

Intel(R) Core(TM) i7-3630QM CPU

@ 2.40GHz (3.40 GHz TB)

Processor

cache

6 MB Intel® Smart Cache

System

memory

(RAM)

8 GB DDR3 1600 MHz

Disk capacity

and speed

750 GB 7200rpm

Disk interface 2.5" SATA

There are two very significant parameters when evaluating

both No-sql databases and other types of databases: The

space occupied by the recorded data on the hard disk and

the average completion times of various queries. In this

study, the database, which contains the genotypes (on the

whole-genome) of 2504 individuals and other related data

(e.g. reference chromosome sequences, generic variations

and etc.) was meticulously analyzed according to both

criteria. The size of the space required to store any data in

the database is a very important criterion for designers. In

particular, given the fact that human DNA is composed of

approximately 3.2 billion base pairs, this criterion becomes

even more important. On the other hand, besides the space

occupied by variation-based personal genetic data, the size

of the indices created to speed up the query results should

also be taken into account. In the light of this information,

Table-12, which shows the results (space requirements of

“Personal_Genomes” collection and related indices) of the

analyses, is shown below.

Table 12. The spaces occupied by the

“Personal_Genomes” collection and the related indices
Gender “Personal_Genomes”

Collection (MB)

Index-

1 (KB)

Index-

2 (KB)

Index-

3

(MB)

Total

(MB)

Total

without

Index-3

(MB)

Female 70.227 18.884 30.651 41.032 111.307 70.275

Male 69.148 18.675 41.65 55.757 124.964 69.207

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 4, EKİM 2021 399

The values in Table-12 reflect the average of 2504 people.

That is, the values in the table relate to one person. In

addition, there are other significant points to be considered

in this table. The first of these is that the values in the

columns “Index-1” and “Index-2” are in kilobytes unlike

the other columns. On the other hand, the index-1 values

are consistent with the values of the “Personal_Genomes”

collection, whereas the index-2 and index-3 values are not

very consistent. The reason of this is related to the way the

mongo database stores indices. In fact, the most noticeable

thing on the table is the index-3 values. When the index-3

values are compared with index-1 and index-2 values, the

gap between them is clearly visible. Such a huge difference

is quite surprising, and this issue will be discussed again

later. As already mentioned, one of the main purposes of

this study is to keep personal genetic data in the database

with minimum space requirement. When this case is

considered, the most important part of the table is the

values in the last two columns. Due to the special case of

index-3, two different calculations were made. In the case

where index-3 is not included in the total, variation-based

genetic data of a person for the whole genome occupies

approximately 70 MB in the database. Although the values

related to index-3 are specified in Table-12, the use of

index-3 was later abandoned. The reason for the

abandonment of index-3 will be explained later.

Besides the size of the space needed to store data, there are

other important criteria used to evaluate the success of the

database: The time to save the data into the database, the

size of the spaces where data is stored in primary memory,

and the response times of the database to various queries.

As already mentioned, personal genetic data are recorded

in the Mongo database in the form of regions. The

recording times of all regions that make up the genome (in

short, genome recording times) are nearly 65 and 64

seconds for female and male, respectively. In fact, all

regions that make up a person's genome can be recorded in

the database in one go. In this case, the average recording

time of the genome will be much less. Besides the space

where personal genetic data is stored on the hard disk, the

space they occupy in the primary memory is also extremely

important. Since the RAM capacity of the computer is

limited, the fit of the genetic data of as many people as

possible into the RAM, which is of limited size, means that

the clinical applications will take less time. In the light of

this information, the average RAM spaces occupied by the

objects of type "RegionMD" were calculated. Except for

the regions of male sex chromosomes, the average size of

the RAM space occupied by one region is approximately

0.3 MB. Since male sex chromosomes are haploid, the

average RAM space occupied by a region belonging to

these chromosomes is approximately 0.25 MB. The total

RAM spaces required for the whole-genome of an

individual are nearly 539 and 531 MBs for female and

male, respectively. Finally, the total number of regions

forming these genomes are nearly 1817 and 1799 for

female and male, respectively. Please note that the values

specified here are the average of 2504 people (for sex

chromosomes, average values were computed based on the

male and female counts).

Although the time required to store variation-based

personal genetic data into the database is important, more

important than this, is the response times of the database to

various queries that are frequently performed in clinical

applications. The reason is quite obvious: The personal

genetic data is recorded once in the database. On the other

hand, this data can be frequently questioned in clinical

operations. Here, there are a number of factors that affect

completion times of the queries. Especially, the elements

that are directly related to the design, considerably affect

query performance and data size, depending on the quality

of the design. In the previous chapter, it was stated that the

design of the database, related documents and indices was

carried out in line with the needs of various clinical

applications. From this point of view, various queries were

devised that these applications can frequently perform, and

the related analysis were carried out using these queries.

The devised queries are shown in Table-13.

Table 13. The queries utilized to test the indices

Query

No

Explanation

1) A genotype on a particular position (Chr No:1,

Position: 196696932)

2) The genotypes on two close positions (Chr

No:1, Positions: 196696932, 196659236)

3) The whole of the region containing the position

(Chr No:1, Position: 196696932)

4) Two distant regions containing the positions

(Chr No:1, Positions: 100, 196696932)

Table-14 shows both the response times of the database to

the queries given above and the memory space it used

while running the queries. Note that the time values in

Table-14 are in milliseconds and size values are in

megabytes. In the analyses made to calculate these values,

the method used is as follows: The computer is restarted

before each query is run and the query is run when the hard

disk usage is 0%. The same query is executed a second time

immediately after (without losing any time) the first query

is completed. Namely, the same query is run twice in the

same session. Actually, depending on the number of people

specified in the query, the same query is run again and

again (within a loop) for different people. In short, in a

single session, the actual run count of the query is more

than 2. This situation is clearly shown in the table. The

iteration count in the table indicates this. In addition, these

operations were repeated 10 times for each of the different

triplets (query, case, index). Therefore, all the values

shown in the table are average values. On the other hand,

although there are 2504 people in the database, the number

of people queried in the analysis is 2500. The reason is that

2500 can be divided by 5, 25, and 100 (three different cases

in terms of people count).

400 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 4, EKİM 2021

Table 14. The effect of indices and number of queried people on time and space *
 Individual Count & Iteration Count (Total = 2500 Individuals)

500 & 5 (Case-1) 100 & 25 (Case-2) 25 & 100 (Case-3)

Time Time Space Space Time Time Space Space Time Time Space Space

Q
u

er
ie

s
(Q

ry
)

&
 I

n
d

ex
es

Qry-

1

Indexes

2&3

43652 19616 920.4 922.5 45671 19396 939.6 921.7 47127 19711 917 917.5

Index 2 43557 19197 905.7 905.4 45566 19212 918.7 920 46954 19700 915 915.4

Index 3 254457 155299 2965 3195 257771 159582 3004 3075 263831 166525 2939 3177

Qry-

2

Indexes

2&3

248408 204996 3102 3114.3 265887 211644 3027.6 3084.5 282381 207522 3116.3 3142

Index 2 250324 205160 3014.7 3144.2 260415 209428 3017.4 3098 265353 209142 3012.4 3129.7

Index 3 1669826 1636897 3164 3485 1677501 1661483 3146 3468 1687321 1662153 3148 3470

Qry-

3

Indexes

2&3

292056 278209 915.7 915.2 319761 285249 914.9 915 323700 295155 905.4 904

Index 2 293012 279306 899.4 900.2 317891 285998 899.5 900.3 321647 292626 899.5 900.7

Index 3 505795 398305 2996 3165 509475 405510 3009 3200 513296 411233 3008 3174

Qry-

4

Indexes

2&3

777042 751526 2918.3 2994.5 800127 751800 3030.8 3160.5 800499 756581 3112.1 3200.1

Index 2 775562 746223 2980 2983 798224 747788 2957.7 3120.2 799002 756106 2999 3114

Index 3 1847894 1815398 3211 3375 1853521 1822988 3177 3441 1873800 1823588 3219 3477

* Time values are in milliseconds and size values are in megabytes.

The values in Table-14 allow us to make very important

inferences. First of all, let us remember the crucial and

intriguing question about indexes asked in the

"Personal_Genomes" section: "If the third index fully

covers the second index, why is the second index needed?".

Surprisingly, it was observed that index-3 does not provide

the expected gain, and even, contrary to what is expected,

increases query times so much more. As seen, there is a

cliff (in terms of both time and space) between the second

and third indices. For these reasons, index-3 was

abandoned.

The second inference obtained from the values specified in

Table-14 is related to the queries. Consider query-1 and

query-2 for case-1. In query-1 section, the first reading

value for index-2 is 43557. On the other hand, in query-2

section, the first reading value for index-2 is 250324. That

is, the query-2 time is almost six times the query-1 time.

Also, the amount of RAM space used by Mongo database

is 905.7MB in the first run of query-1, whereas this value

is 3014.7MB for query-2. Namely, the space utilized for

query-2 is more than 3 times the space utilized for query-

1. In fact, these two queries are quite similar. The only

difference between them is that query-1 queries a single

genotype (at a specific location), whereas query-2 queries

two genotypes (at two different locations). Furthermore,

the two positions queried by query-2 are relatively close to

each other. Therefore, in a certain part of the queried

people, these two positions are more likely to fall into the

same region. In short, rather than using Query-2, it makes

more sense to run query-1 twice for two different positions.

A similar situation applies to the relation between query-3

and query-4.

The third inference made from the results of the analysis is

related to the number of people queried in each query. The

increase in the number of people queried in a single

iteration reduces the total time spent for 2500 people. It

would be a logical choice to query (in one go) the genetic

data of as many people as possible in the queries. No

obvious difference was observed between the cases in

terms of space. The last inference made from the values is

that the time spent in the second run of the same query is

less than the first run. This is true for all queries and all

cases, but the proportional difference between the times

required for first run and second run varies depending on

the query type.

The recent study [44] of Çakırgöz & Sevinç, published in

2018, uses relational database to store variation-based

personal genetic data. In this study, various external data

formats were designed to hold variations and genotypes,

and all genotypes of a chromosome were (collectively)

recorded in the database in the Varbinary binary format and

in a compressed form. Namely, in this way, 23 and 24 rows

are used to store variation-based genetic data for the entire

genome of females and males, respectively. As in our

study, the proposed method by Çakırgöz & Sevinç (2018)

was also tested with real data of 2504 people, published by

1000 Genome Project. On the other hand, although it has

some limitations (For instance, it does not allow complex

SQL queries, most transactions are handled at the

application layer.), the method proposed by Çakırgöz &

Sevinç (2018) has given the most successful results in

terms of space requirement among recent similar studies.

Since it uses the same data set and gives successful results,

our method was compared with this method using the same

configurations. The comparison results regarding the space

requirements are shown in Table-15. Although there is a

certain difference between the two methods in terms of

hard disk space requirement, both methods resulted in

significant space savings. Compared to the space required

to store the raw sequence data, the proposed method by

Çakırgöz & Sevinç (2018) yielded a space gain of 99.74%.

This value is 98.86% for our method. On the other hand, in

our method, the total RAM spaces required for the whole-

genome of an individual are nearly 539 and 531 MBs for

female and male, respectively. These values are slightly

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 4, EKİM 2021 401

lower in the other method, but there is no significant

difference.

Table 15. Comparison table for size requirements
Gender Size Requirements on

Harddisk

Size Requirements in RAM

Our

Method

Method of Çakırgöz

& Sevinç (2018)

Our

Method

Method of Çakırgöz

& Sevinç (2018)

Female 70.275

MB

15.270 MB 538.93

MB

496.630 MB

Male 69.207

MB

15.086 MB 531.34

MB

484.463 MB

In the method of Çakırgöz & Sevinç (2018), during the

process of reading the data stored in the database and

transforming it into class objects, the data are passed

through many stages. First, the data held in the form of

compressed byte array is fetched from the database, then,

this data is decompressed, and finally, the decompressed

data is transformed into class objects. According to the

analysis results (using the same computer configuration),

these three operations take 340.96 milliseconds for

chromosome-1 on the average (for one person). For 2500

people, these three processes take a total of 852400

milliseconds, not including the time it takes to find the

region or genotype and return it. So, no matter what query

type, this time is inevitable. When the Table-14 showing

the times taken by our method for 4 different query types

is examined, even query-4 (Index-2, case-1, first run),

which requires the most time among query types, was

realized below this time. In other query types, the

difference is much greater. In short, our method performed

much better in terms of query times.

4. CONCLUSION

In this study, a document-based no-sql database (Mongo)

was utilized for the organization of variation-based

personal genetic data, and the space requirements and

query performances of this database was computed.

Thanks to both the advantages of no-sql database and our

class designs that support all types of variation, various

clinical applications and studies using personal variation

data will be able to use the data in the database directly

without the need for any data conversion.

After the database was created, the personal genetic data of

2504 people were recorded in the database in the form of

regions. As a result of the analyses made on the database,

it was seen that the proposed method provides very

important gains. The various important gains of the study

are as follows: Variation-based genetic data of a person for

the whole genome occupies approximately 70 MB in the

database. By using this proposed method, the hard disk

space required to store all the variations in the genome of a

person is approximately 1.14% of the space required to

store the raw sequence of this person. In terms of hard disk

space, this method provides a saving of approximately

98.86%. Except for the regions of male sex chromosomes,

the average size of the RAM space occupied by one region

(containing up to 2500 genotypes) is approximately 0.3

MB. This value is approximately 0.25 MB for a region of

male sex chromosomes. On the other hand, the RAM

spaces required to store the genotypes/haplotypes in the

whole-genome of a female and male are approximately 538

MB and 531 MB, respectively. These values are nearly

8.8% of the space required to store the raw sequence data

of this person. In terms of RAM space, this method

provides a saving of approximately 91.2%.

REFERENCES

[1] N. J. Schork, “Personalized medicine: time for one-person trials”,

Nature, 520(7549), 609-611, 2015.

[2] C. Gonzaga-Jauregui, J. R. Lupski, R. A. Gibbs, “Human genome

sequencing in health and disease”, Annual review of medicine, 63,

35-61, 2012.

[3] 1000 Genomes Project Consortium, “A map of human genome

variation from population-scale sequencing”, Nature, 467(7319),

1061, 2010.

[4] 1000 Genomes Project Consortium, “An integrated map of genetic

variation from 1,092 human genomes”, Nature, 491(7422), 56-65,

2012.

[5] 1000 Genomes Project Consortium, “A global reference for human

genetic variation”, Nature, 526(7571), 68-74, 2015.

[6] 1000 Genomes Project Consortium, “An integrated map of

structural variation in 2,504 human genomes”, Nature, 526(7571),

75-81, 2015.

[7] Internet: 1000 Genomes Project Consortium,

/vol1/ftp/release/20130502/ directory,

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/,

05.01.2021.

[8] Internet: 1000 Genomes Project Consortium,

/vol1/ftp/release/20130502/supporting/bcf_files directory,

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/suppor

ting/bcf_files, 05.01.2021.

[9] M. Futema, V. Plagnol, R. A. Whittall, H. A. W. Neil, S. E.

Humphries, “Use of targeted exome sequencing as a diagnostic tool

for Familial Hypercholesterolaemia”, Journal of medical genetics,

49(10), 644-649, 2012.

[10] P. N. Taylor, E. Porcu, S. Chew, P. J. Campbell, M. Traglia, S. J.

Brown, Y. Memari, “Whole-genome sequence-based analysis of

thyroid function”, Nature communications, 6(1), 1-11, 2015.

[11] International Human Genome Sequencing Consortium, “Finishing

the euchromatic sequence of the human genome”, Nature,

431(7011), 931, 2004.

[12] I. Dunham, E. Birney, B. R. Lajoie, A. Sanyal, X. Dong, M.

Greven, J. Dekker, et. al., “An integrated encyclopedia of DNA

elements in the human genome”, Nature. 489, 57–74, 2012.

[13] Cancer Genome Atlas Research Network, “The cancer genome

atlas pan-cancer analysis project”, Nature genetics, 45(10), 1113,

2013.

[14] G. F. Gao, J. S. Parker, S. M. Reynolds, et. al., “Before and after:

comparison of legacy and harmonized TCGA genomic data

commons’ data”, Cell systems, 9(1), 24-34, 2019.

402 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 4, EKİM 2021

[15] J. Carrot-Zhang, N. Chambwe, J. S. Damrauer, et. al.,

“Comprehensive analysis of genetic ancestry and its molecular

correlates in cancer”, Cancer Cell, 37(5), 639-654, 2020.

[16] Internet: Cancer Genome Atlas Research, GDC,

https://portal.gdc.cancer.gov/, 05.01.2021.

[17] H. Li, J. Ruan, R. Durbin, “Mapping short DNA sequencing reads

and calling variants using mapping quality scores”, Genome

research, 18(11), 1851-1858, 2008.

[18] H. Li, R. Durbin, “Fast and accurate short read alignment with

Burrows–Wheeler transform”, Bioinformatics, 25(14), 1754-1760,

2009.

[19] R. Li, Y. Li, K. Kristiansen, J. Wang, “SOAP: short

oligonucleotide alignment program”, Bioinformatics, 24(5), 713-

714, 2008.

[20] K. Chen, J. W. Wallis, M. D. McLellan, et. al., “BreakDancer: an

algorithm for high-resolution mapping of genomic structural

variation”, Nature methods, 6(9), 677-681, 2009.

[21] D. C. Koboldt, K. Chen, T. Wylie, et. al., “VarScan: variant

detection in massively parallel sequencing of individual and pooled

samples”, Bioinformatics, 25(17), 2283-2285, 2009.

[22] H. Li, B. Handsaker, A. Wysoker, et. al., “The sequence

alignment/map format and SAMtools”, Bioinformatics, 25(16),

2078-2079, 2009.

[23] A. McKenna, M. Hanna, E. Banks, et. al., “The Genome Analysis

Toolkit: a MapReduce framework for analyzing next-generation

DNA sequencing data”, Genome research, 20(9), 1297-1303,

2010.

[24] J. Dean, S. Ghemawat, “MapReduce: simplified data processing on

large clusters”, Communications of the ACM, 51(1), 107-113,

2008.

[25] Internet: VCFtools, https://vcftools.github.io/specs.html,

05.01.2021.

[26] S. Grumbach, F. Tahi, “Compression of DNA sequences”,

DCC93: Data Compression Conference, 340-350, IEEE, 1993.

[27] E. Rivals, J. P. Delahaye, M. Dauchet, “A guaranteed compression

scheme for repetitive DNA sequences”, Data Compression

Conference, 453-453, IEEE Computer Society, March, 1996.

[28] A. Apostolico, S. Lonardi, S. “Compression of biological

sequences by greedy off-line textual substitution”, DCC 2000,

Data Compression Conference, 143-152, IEEE, March, 2000.

[29] X. Chen, S. Kwong, M. Li, “A compression algorithm for DNA

sequences and its applications in genome comparison”, Genome

informatics, 10, 51-61 1999.

[30] S. Christley, Y. Lu, C. Li, X. Xie, “Human genomes as email

attachments”, Bioinformatics, 25(2), 274-275, 2009.

[31] D. A. Wheeler, M. Srinivasan, M. Egholm, et. al., “The complete

genome of an individual by massively parallel DNA sequencing”,

Nature, 452(7189), 872-876, 2008.

[32] S. Kuruppu, S. J. Puglisi, J. Zobel, “Relative Lempel-Ziv

compression of genomes for large-scale storage and retrieval”,

International Symposium on String Processing and

Information Retrieval, Springer, Berlin, Heidelberg, October,

201-206, 2010.

[33] M. D. Cao, T. I. Dix, L. Allison, C. Mears, “A simple statistical

algorithm for biological sequence compression”, Data

Compression Conference (DCC'07), 43-52, IEEE, March, 2007.

[34] V. Mäkinen, G. Navarro, J. Sirén, N. Välimäki, “Storage and

retrieval of highly repetitive sequence collections”, Journal of

Computational Biology, 17(3), 281-308, 2010.

[35] K. Shvachko, H. Kuang, S. Radia, R. Chansler, “The hadoop

distributed file system”, IEEE 26th symposium on mass storage

systems and technologies (MSST), 1-10, IEEE, May, 2010.

[36] J. Dean, S. Ghemawat, “MapReduce: a flexible data processing

tool”, Communications of the ACM, 53(1), 72-77, 2010.

[37] H. Nordberg, K. Bhatia, K. Wang, Z. Wang, “BioPig: a Hadoop-

based analytic toolkit for large-scale sequence data”,

Bioinformatics, 29(23), 3014-3019, 2013.

[38] A. Schumacher, L. Pireddu, M. Niemenmaa, et. al., “SeqPig:

simple and scalable scripting for large sequencing data sets in

Hadoop”, Bioinformatics, 30(1), 119-120, 2014.

[39] M. S. Wiewiórka, A. Messina, A. Pacholewska, et. al., “SparkSeq:

fast, scalable and cloud-ready tool for the interactive genomic data

analysis with nucleotide precision”, Bioinformatics, 30(18), 2652-

2653, 2014.

[40] M. Masseroli, P. Pinoli, F. Venco, et. al., “GenoMetric Query

Language: a novel approach to large-scale genomic data

management”, Bioinformatics, 31(12), 1881-1888, 2015.

[41] M. Zaharia, M. Chowdhury, T. Das, et. al., “Resilient distributed

datasets: A fault-tolerant abstraction for in-memory cluster

computing”, 9th {USENIX} Symposium on Networked Systems

Design and Implementation, 15-28, 2012.

[42] V. Bafna, A. Deutsch, A. Heiberg, et. al., “Abstractions for

genomics”, Communications of the ACM, 56(1), 83-93, 2013.

[43] C. Kozanitis, A. Heiberg, G. Varghese, V. Bafna, “Using Genome

Query Language to uncover genetic variation”, Bioinformatics,

30(1), 1-8, 2014.

[44] O. Çakirgoz, S. Sevinc, “Organization of Variation Based Personal

Genetic Data with Relational Database”, International Journal of

InformaticsTechnologies, 11(3), 295–307, 2018.

