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Abstract— Variation-based personal genetic data are at the center of many clinical practices and many studies in 

bioinformatics. Unfortunately, almost all existing methods developed to organize personal genetic data are not variation-

based and these methods have not been tested with a large amount of real data. In applications requiring variation-based 

data, an intense data conversion problem arises when these existing methods are used. On the other hand, the few solutions 

available that are variation-based are not entirely structural, and they do not meet the needs of daily practice. In this study, 

a document-based No-SQL database and related designs are proposed for the organization of variation-based personal 

genetic data. Our structural solution contains many classes, collections and indexes, and it supports all types of variations 

(both structural and non-structural). In this database, the variation data of 2504 people published by the 1000 Genomes 

Project were stored smoothly and efficiently. The spaces occupied by personal genetic data in primary memory and hard 

disk were analyzed. In addition, some queries that might be frequently used by clinical applications were run and the 

response times of the database was calculated. The results of the analyzes show that the proposed method provides very 

important gains.  

 

Keywords— no-sql database, personal genome database, personal genetic data, human genome variations, 1000 genomes 

project  

 

 

Varyasyon-Bazlı Kişisel Genetik Verilerin Doküman-

Tabanlı No-Sql Veri Tabanı ile Organizasyonu 
 

Özet— Varyasyon-bazlı kişisel genetik veriler çoğu klinik uygulamanın ve biyoinformatikteki çoğu çalışmanın 

merkezinde bulunmaktadır. Ne yazık ki, kişisel genetik verileri organize etmek için geliştirilen mevcut yöntemlerin 

neredeyse tamamı varyasyon-bazlı değildir ve bu yöntemler büyük miktardaki gerçek verilerle test edilmemiştir. 

Varyasyon-bazlı verilere ihtiyaç duyan uygulamalarda, bu mevcut yöntemler kullanıldığında, yoğun bir veri dönüştürme 

problemi ortaya çıkmaktadır. Öte yandan, az sayıdaki mevcut varyasyon-bazlı çözümler tamamıyla yapısal değildir ve 

günlük pratiğin gereksinimlerini karşılamamaktadır. Bu çalışmada, varyasyon-bazlı kişisel genetik verilerin 

organizasyonu için doküman-tabanlı No-SQL veri tabanı ve ilgili tasarımlar önerilmektedir. Yapısal çözümümüz çok 

sayıda sınıf, koleksiyon ve indeks içermektedir ve tüm varyasyon tiplerini (yapısal ve yapısal olmayan) desteklemektedir. 

Bu veri tabanında, 1000 Genom Projesi tarafından yayınlanan 2504 kişinin varyasyon verileri sorunsuz ve verimli bir 

şekilde depolanmıştır. Kişisel genetik verilerin ana bellek ve sabit diskte kapladığı alanlar incelenmiştir. Ayrıca, klinik 

uygulamaların sıklıkla kullanabileceği bazı sorgular çalıştırılmış ve veri tabanının yanıt süreleri hesaplanmıştır. 

Analizlerin sonuçları, önerilen yöntemin çok önemli kazanımlar sağladığını göstermektedir. 
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1. INTRODUCTION  

The development of faster and cheaper sequencing 

technologies has made possible the personalized human 

genomics. Thanks to these technological advances, many 

personal diploid human genome sequences were created. 

At the same time, our knowledge of individual genetic 

variations has increased significantly. On the other hand, 

personal genome sequencing has now become a common 

part of medical practice [1]. Both the whole-genome and 

exome sequencing reveal the genetic causes of diseases and 

the treatment methods are determined in the light of this 

information [2]. 

Very large-scale sequencing projects have been 

implemented by utilizing next generation sequencing 

technologies. For example, the 1000 Genome Project [3] 

[4] was launched in 2008 and is a very large international 

cooperation project. At the end of the project, a large 

catalog of human genomic variations was created. Maps of 

genetic variations have been published using the genetic 

data of 2504 individuals selected from 26 different 

populations [5, 6]. The variation data were published by 

1000 Genomes Project as VCF [7] and BCF [8] files. The 

total storage space used for the project is more than 500 

TB. Approximately 2 years after the 1000 Genome Project, 

the UK10K project [9] [10] was launched in July 2010 by 

the Wellcome Trust Sanger Institute, the largest 

contributor to the Human Genome Project [11]. The main 

objective of the UK10K project is to reveal more clearly 

the association between rare genetic variations and 

diseases. From this perspective, it can be said that the 

UK10K project contributed more than the 1000 Genome 

Project, since the output of the UK10K project contains 

both genotype and phenotype knowledge. Another project 

initiated after the UK10K project is the Encyclopedia of 

DNA elements (ENCODE) project [12]. Within the scope 

of this project, ChIP-seq and RNA-seq assays were carried 

out in human and mouse and many experimental data sets 

were made available. Finally, the large-scale sequencing 

project that must be mentioned is the Cancer Genome Atlas 

(TCGA) project [13, 14, 15]. The Cancer Genome Atlas 

(TCGA) project was carried out to explore genomic 

changes in human cancer. Through the data portal [16], it 

provides access to clinical information as well as the tumor 

genome of many cases of 33 different types of cancer. 

Next-generation high-throughput sequencing platforms are 

generating massive amounts of genetic data. In parallel, a 

number of tools have been developed to work with these 

genetic data generated by next-generation sequencing 

devices. These tools can be actually divided into two, 

basically. In the first section, read based aligners exist like 

MAQ [17], BWA [18], and SOAP [19]. In the second 

section, single nucleotide polymorphism and structural 

variation detection tools exist like BreakDancer [20], 

VarScan [21], and MAQ. Shortly after these tools, the 

SAM file specification [22] emerged as the platform-

independent standard format for storing next-generation 

sequencing data. After the development of SAM, [23] 

proposed the Genome Analysis Toolkit (GATK), a 

structured programming framework, which takes 

advantage of this common input format to simplify the up-

front coding costs for end users. GATK uses the functional 

programming philosophy of MapReduce [24] and eases the 

development of analysis tools for next-generation DNA 

sequencers. On the other hand, a variety of genotyping and 

variation formats were proposed, including common 

emerging SNP formats like GLF and VCF [25]. 

Numerous compression algorithms have also been 

proposed to reduce the size of genetic data. BioCompress 

[26] is the first compression algorithm developed for the 

compression of DNA sequences. In the BioCompress 

algorithm, each nucleotide base is represented and encoded 

by 2 bits. Besides, BioCompress detects reverse 

complement repeats. The two compression algorithms 

developed after BioCompress, Cfact [27] and Off-line [28], 

are actually variations of BioCompress. Both algorithms 

work in rounds, greedily replacing duplicate text with 

shorter codes. Then, GenCompress [29] showed that by 

considering approximate repeats, the results could be 

improved. Along with the GenCompress algorithm, most 

DNA compression algorithms are built on various 

variations of approximate repeat detection. The biggest 

drawback of many of these early DNA compression 

algorithms is that they can only compress small files. Now, 

next-generation sequencing devices can sequence many 

individual genomes from the same species. Therefore, 

recent algorithms have addressed the problem of 

compressing DNA data from the same species. E-mail 

attachment [30] compresses variation data from human 

genomes and encodes the small variations with respect to 

the human reference sequence and known variations 

recorded in a SNP database. This method is a four-step 

method and uses multiple compression techniques 

together. They applied the method to James Watson’s (JW) 

genome [31], and managed to compress it to 4 MB. As with 

other compression methods, the disadvantage of this 

method is that it does not contain index. Accordingly, it 

does not support random access. Other successful and well-

known compression algorithms are RLZ [32], XM [33], 

and RLCSA [34]. One of the best single sequence DNA 

compression algorithms is XM, but it takes hours for a 

single chromosome sequence to compress. RLZ specializes 

in the compression of large, related DNA datasets. The 

total dataset of three human genome sequences can be 

represented in 755 MB with RLZ and 3835 MB with 

RLCSA. 

Hadoop [35] and MapReduce [36] frameworks have also 

been adopted by a few specific bioinformatics tools [37, 

38, 39, 40]. In particular, SparkSeq [39] has been proposed 

as general-purpose tool for processing of DNA and RNA 

sequence data using the Apache Spark engine [41]. 

Genome Query Language (GQL) [42, 43] is another well-

known structural approach for processing genomic data. 

GQL is based on genome query algebra and uses an SQL 

extension. Later, GenoMetric Query Language (GMQL) 

[40], which is based on Hadoop framework and Apache Pig 

platform, has been proposed to query and compare multiple 

and heterogeneous genomic datasets for biomedical 



BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 4, EKİM 2021 393 

knowledge discovery. GMQL is very similar to GQL, but 

GQL start from the reads (raw data) of NGS machines, 

whereas GMQL starts from processed datasets. 

The recent study [44] that uses relational database to store 

variation-based personal genetic data is the closest to our 

study. In this study, various external data formats were 

designed to hold variations and genotypes, and all 

genotypes of a chromosome were (collectively) recorded 

in the database in the Varbinary binary format and in a 

compressed form. That is, the relational database alone was 

not sufficient to represent and store personal genetic data. 

Naturally, this method does not allow complex SQL 

queries, most transactions are handled at the application 

layer.  

In this study, a solution was developed for the systematic 

storage and querying of variation-based personal genetic 

data needed by most clinical practice and most studies in 

bioinformatics. For this purpose, a no-sql database was 

used and many classes, collections and indexes were 

designed. Our solution supports all variation types. The 

sections of the article are as follows: In the second section, 

firstly the data set used in the study was introduced, then 

the designed collections, classes and indexes were 

explained. In the third chapter, the analyzes and analysis 

results were mentioned, the results were discussed, and at 

the end of the chapter, our method is compared with a 

recent and successful method. Final remarks are given in 

the last section. 

2. MATERIALS AND METHODS 

In this section, we described the materials and methods 

required to create and examine the database mentioned in 

this study. We used a document-based No-SQL database 

(Mongo) and created 5 collections, 15 classes and many 

indices for the organization of variation-based personal 

genetic data. In this database, the variation data of 2504 

people published by the 1000 Genomes Project were stored 

smoothly and efficiently. Then, the spaces occupied by 

personal genetic data in primary memory and hard disk 

were analyzed. In addition, some queries that might be 

frequently used by clinical applications were run and the 

response times was calculated. 

2.1. Dataset  

In this study, we used the large catalogue of human 

genomic variations, which was created by the 1000 

Genomes Project and published as BCF files [8]. This large 

catalogue includes variation-based personal genetic data of 

2504 individuals selected from 26 different populations. 

2.2. Database Schema 

The No-SQL database schema, designed to hold variation-

based personal genetic data in Mongo database, appears in 

Figure-1. As shown in Figure-1, the database includes 5 

collections. Each of these collections will be discussed 

separately in the following sections

 
Figure 1. No-SQL database schema 
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2.3. Collections of Genomes Database   

Individuals Collection  

The "Individuals" collection is utilized to store individuals’ 

information and the document type of this collection is 

"IndividualMD" class. The fields of the "IndividualMD" 

class and the descriptions of these fields are indicated in 

detail in Table-1. The fields of the "IndividualMD" class 

were determined in a way to be compatible with the data of 

1000 Genomes Project. Therefore, other fields can be 

added to this class according to some characteristics (e.g. 

coverage, size, purpose, etc.) of the applications. The value 

of the "_id" field, which uniquely identifies the documents 

(individuals) within the “Individuals” collection, is 

assigned to the "PID" field of the “RegionMD” class. In 

this way, the link between “Individuals” and 

“Personal_Genomes” collections is established. 

Table 1. The fields of “IndividualMD” class 

Field 

Name 

Data 

Type 

Explanation 

_id ObjectId Document id (primary 

key) 

Name string Name of the individual 

Family_ID string Family_ID of the 

individual 

Population string Population of the 

individual 

Gender string Gender of the individual 

The two indexes created for the “Individuals” collection 

are shown in Table-2. The first index ("_id_") is the default 

index created by Mongo database. This index indexes 

documents (individuals) in increasing order depending on 

the "_id" field. The second index is created by us. This 

index indexes individuals in increasing order according to 

their names. In this way, the data regarding any individual 

can be obtained from the “Individuals” collection in a very 

short time. 

Table 2. The indexes of “Individuals” collection 

Index Name Keys and Order 

_id_ { "_id" : increasing } (Default index) 

Name_1 { "Name" : increasing } 

Ref_Chr_Info Collection (Reference Chromosome 

Information)  

The "Ref_Chr_Info" collection holds basic information 

about reference chromosomes and the document type of 

this collection is the “Ref_Chr_InfoMD” class. The fields 

of the "Ref_Chr_InfoMD" class and the explanations of 

these fields are specified in detail in Table-3. The 

"Chr_No" field takes the values of 23 and 24 for the X and 

Y chromosomes, respectively. On the other hand, the 

"Hga" field shows the assembly of the human reference 

genome. These two fields are the basic fields that separate 

any “Ref_Chr_InfoMD” document from other documents 

of the “Ref_Chr_Info” collection. When referring to a 

personal genotype, we need to specify which reference 

chromosome (which assembly) was used for the alignment 

process. Accordingly, the value of the “_id” field of the 

“Ref_Chr_InfoMD” document is assigned to the 

"R_C_ID" field of the “RegionMD” class (This class will 

be described later.). In this way, a link between the 

“Ref_Chr_Info” collection and the “Personal_Genomes” 

collection is established. 

Table 3. The fields of “Ref_Chr_InfoMD” class 

Field 

Name 

Data 

Type 

Explanation 

_id ObjectId Document id (primary key) 

Chr_No int Chromosome number 

Hga string Human genome assembly 

SP int Start position of the 

chromosome 

EP int End position of the 

chromosome 

Len int Length of the chromosome 

The two indexes created for the “Ref_Chr_Info” collection 

appear in the Table-4. The first of these indices is created 

by default by Mongo database. The second index indexes 

the chromosomes according to the "Hga" and "Chr_No" 

fields (first by "Hga" values, and then, within each "Hga", 

by "Chr_No" values). 

Table 4. The indexes of “Ref_Chr_Info” collection 

Index Name Keys and Order 

_id_ { "_id" : increasing } (Default 

index) 

Hga_1_Chr_No_1 { "Hga" : increasing, "Chr_No" : 

increasing } 

Ref_Seq Collection (Reference Sequences)  

"RefSeq" is a collection which is created to hold sequences 

(bases) of reference chromosomes and the class 

“Ref_SeqMD” is the document type of this collection. 

Here, the chromosome sequences are separated into 

regions that do not exceed the maximum document size 

specified by the Mongo database and each region is saved 

as a document into the collection. All fields of the 

“Ref_SeqMD” class and the properties of these fields are 

shown in Table-5. 

Table 5. The fields of “Ref_SeqMD” class 

Field 

Name 

Data 

Type 

Explanation 

_id ObjectId Document id  

R_C_ID ObjectId The id of the document 

(including the ref. chr.) in the 

“Ref_Chr_Info” collection 

SP int Start position of the region 

EP int End position of the region 

Len int Length of the region 

Seq string The sequence of the region 

defined by “SP” and “EP”. 
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The "Seq" field of the Ref_SeqMD class stores the 

sequence. Here, the maximum sequence length that a 

document can hold was determined to be 1000000, by 

considering the maximum document size and query 

performance criterion. On the other hand, the information 

of which reference chromosome (chromosome number and 

assembly) the sequences belong to must also be kept 

somewhere and the "R_C_ID" field is used for this 

purpose. Accordingly, the value of the "_id" field of the 

"Ref_Chr_InfoMD" document is assigned to the 

"R_C_ID" field of the "Ref_SeqMD" document. In this 

way, the connection between the “Ref_Chr_Info” 

collection and the “Ref_Seq” collection is established. 

The two indexes created for the "Ref_Seq" collection are 

shown in Table-6. The first of these indices is the index, 

which is created by default. The second index indexes the 

documents (chromosome regions) according to the 

"R_C_ID" and "SP" fields (first by "R_C_ID" values, and 

then, within each "R_C_ID", by "SP" values). In this way, 

any desired region(s) of any chromosome can be fetched 

quickly from the database. 

Table 6. The indexes of “Ref_Seq” collection 

Index Name Keys and Order 

_id_ { "_id" : increasing } (Default 

index) 

R_C_ID_1_SP_1 { "R_C_ID" : increasing, "SP" : 

increasing } 

Generic Variations Collection  

In a database developed for the storage of variation-based 

personal genetic data and for querying related data in 

clinical applications, a collection that will hold generic 

variations is one of the indispensable components. 

Naturally, this data needs to be systematically taken from 

the database along with personal genetic data. In line with 

the requirements, the "Generic_Variations" collection was 

developed. The document type of this collection is the 

"Gen_VarMD" class and the fields of this class and the 

explanations of these fields are detailed in Table-7.  

The second field of Table-7, "R_C_ID", is utilized for the 

purpose of holding the information of which reference 

chromosome (chromosome number and assembly) the 

respective variation belongs to. Accordingly, the value of 

the "_id" field of the "Ref_Chr_InfoMD" document is 

assigned to the "R_C_ID" field of the "Gen_VarMD" 

document. The next five fields are the basic information 

that defines the variation. In fact, these are all 

indispensable information; but when a novel variation is 

detected, the field "Var_ID" may be null until this variation 

is given a unique id. Other information about the variation 

is stored in the "Info" field, and the data type of this field 

is the "Gen_Var_InfoMD" class, as can be seen from 

Table-7. "Gen_Var_InfoMD" class and 

"Gen_Var_InfoExtMD" class, derived from this class, will 

be explained later. 

Table 7. The fields of “Gen_VarMD” class 

Field 

Name 

Data Type Explanation 

_id ObjectId Document id  

R_C_ID ObjectId The id of the 

document (including 

the ref. chr.) in the 

Ref_Chr_Info" 

collection 

Var_ID string The ID of the variation 

Type char The type of the 

variation ('N' for Non-

structural, 'S' for 

structural variations.) 

Pos int The start position of 

the variation on the 

chromosome 

Ref string Reference allele 

Alt string Alternate alleles 

Info Gen_Var_InfoMD Extra information field  

The indexes created for the "Generic_Variations" 

collection appear in Table-8. In some clinical operations, 

variation's id, the chromosome to which it belongs, and the 

position information are generally available in our hands. 

Moreover, searches also center upon these fields. Moving 

from here, the second and third indices were designed in 

this direction. Notice that the third index indexes the 

variations according to their IDs ("Var_ID" field), and the 

type of this index is hash. 

Table 8. The indexes of “Generic_Variations” collection 

Index Name Keys and Order 

_id_ { "_id" : increasing } (Default 

index) 

R_C_ID_1_Pos_1 { "R_C_ID" : increasing, "Pos" : 

increasing } 

Var_ID_H { "Var_ID" : Hashed} 

Personal_Genomes Collection (Variation-Based Personal 

Genotypes)  

The “Personal_Genomes” collection is the most basic and 

most significant collection of the “Genomes” database. 

This collection is utilized to hold variation-based genetic 

data of individuals (genotypes/haplotypes concerning the 

variations detected on the genome of the person). To avoid 

exceeding the maximum document size of 1000 kB, and 

not to reduce query performance, the chromosomes are 

divided into regions. The document type of the 

“Personal_Genomes” collection is the “RegionMD” class. 

As is known, there is no restriction on the number of 

elements of an array that any Mongo database document 

has (Provided that the maximum document size is not 

exceeded). In this collection, each document (region) 

contains a maximum of 2500 genotypes. The 2500 

genotypes restriction mentioned here is a value determined 

by us, considering the maximum document size and search 

performance. The fields of the "RegionMD" class are given 

in Table-9. 
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It can be seen from the table that there are two relations 

(between "Personal_Genomes" and "Ref_Chr_Info" and, 

between "Personal_Genomes" and "Individuals" 

collections). Thanks to both the fields that make up these 

relationships and the other fields, the “RegionMD” 

document holds genotypes/haplotypes regarding the 

variations that have been identified in any region of a 

person's any chromosome. The "GTs" field of this 

document stores genotypes and the data type of this field is 

“Variation_PositionMD” array. "Variation_PositionMD" 

class and other related classes will be explained in the 

following section. 

Table 9. The fields of “RegionMD” class 

Field 

Name 

Data Type Explanation 

_id ObjectId Document id  

R_C_ID ObjectId The id of the document 

(including the ref. chr.) in the 

“Ref_Chr_Info” collection 

PID ObjectId The id of the document 

(including individual) in the 

“Individuals” collection 

SP int Start position of the region 

EP int End position of the region 

GTs Variation_ 

PositionMD[] 

The array storing the 

genotypes/haplotypes of the 

individual 

In clinical applications that process/query variation-based 

personal genetic data, the largest number of queries will be 

called for this collection and this is the collection that 

occupies the most space. Therefore, the indices designed 

for the "Personal_Genomes" collection are important. In 

the light of this information, three indexes created for the 

"Personal_Genomes" collection are shown in Table-10. 

Table 10. The indices of “Personal_Genomes” collection 

Index Name Keys and Order 

_id_ { "_id" : increasing } 

(Default index) 

PID_1_R_C_ID_1_ 

SP_1_EP_1 

{ "PID" : increasing, 

"R_C_ID" : increasing, 

"SP" : increasing, "EP" : 

increasing } 

PID_1_R_C_ID_1_ 

SP_1_EP_1_GTs.Pos_1 

{ "PID" : increasing, 

"R_C_ID" : increasing, 

"SP" : increasing, "EP" : 

increasing, "GTs.Pos" : 

increasing } 

The first index ("_id_") is the default index created by 

Mongo database. The second and the third indices were 

designed by us. The purpose of designing these two indices 

is to find the genotype/genotypes in any region of any 

chromosome of a person very quickly and to fetch this data 

from the database. In fact, although these two indices are 

quite similar to each other, there is one difference between 

them. In addition to the second index, the third index 

indexes the data according to the "Pos" property of the 

"GTs" field at the last stage. At this point, one might ask: 

"If the third index fully covers the second index, why is the 

second index needed?". The answer to this question will be 

given in the next section when comparing the query 

performances and the space requirements of the indices. 

2.4. Other Classes   

In the previous chapter, the “Genomes” database designed 

to hold variation-based personal genetic data, the 

collections that make up this database and the document 

types of these collections were described. It was also stated 

that the "Personal_Genomes" collection is the most 

important collection among these collections, and it holds 

personal genetic data. But, the “Variation_PositionMD” 

class, which is the data type of the "GTs" field that holds 

personal genotypes and, other related classes were not 

mentioned. Accordingly, the classes 

“Variation_PositionMD”, "Gen_Var_InfoMD" and 

"Gen_Var_InfoExtMD" will be explained in detail in this 

section. 

Class Design for Personal Variations (Haplotypes)  

A total of five classes were designed to hold a variation 

(personal haplotype) detected at any position of any 

chromosome of a person. The designed classes, and 

inheritance and polymorphism relations between these 

classes are shown in Figure-2. As can be seen from the 

figure, "VariationMD" is the class (super class) at the top 

of this hierarchy. The "VariationMD" class has a single 

field, and that field holds the type of the variation. This 

field takes a total of 11 different values in a way to support 

all variation types. To that end, three characters are utilized 

for the non-structural variations, whereas eight characters 

are utilized to represent the structural variations. 

 
Figure 2. Class design for variations 

The class, which is designed to hold a variation (haplotype) 

of type small insertion or deletion, is "Small_IndelsMD". 

This class is derived from the “VariationMD” class and it 
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has two fields, except for the "VT" field of the 

"VariationMD" class. The first field ("VL") is of type 

integer and holds the length of the variation (haplotype). 

What we mean here by the term "variation length" is the 

difference between the length of the "ALT" field and the 

length of the reference allele. In the variations of type short 

insertion, since the length of the alternate allele is greater 

than the length of the reference allele, the value of the "VL" 

field is always positive. In the variations of type short 

deletion, the situation is exactly the opposite, that is, the 

value of the "VL" field is always negative. The "VL" field 

is actually one of the key fields and is also used for a 

significant operation, such as obtaining the raw sequence 

data using genotypes/haplotypes of an individual. Thanks 

to this field, the total change in a particular region can be 

easily found. Also, raw sequence data can be obtained, by 

creating an array with length (length of the particular 

region + total change). On the other hand, the second field 

("ALT") is used to hold the haplotype and it is naturally of 

type string. 

The class, which is designed to hold a variation (haplotype) 

of type substitution, is "SubstitutionMD". As in the 

"Small_IndelsMD" class, this class is also derived from the 

“VariationMD” class. The "SubstitutionMD" class has 

only one field, except for the "VT" field of the 

"VariationMD" class. The name of this single field is 

"ALT" and it is used for the same purpose as the "ALT" 

field of the "Small_IndelsMD" class. In the operation of 

obtaining raw sequence data by using personal 

genotypes/haplotypes, the "SubstitutionMD" documents 

are not considered when calculating the total length 

change. 

Two classes "Variation_StructuralMD" and 

"Variation_Structural_ExtendedMD" were designed to 

store the structural variations. As can be seen from Figure-

2, the class "Variation_structuralMD" is derived from the 

class "VariationMD", whereas the class 

"Variation_Structural_ExtendedMD" is derived from the 

class "Variation_StructuralMD". The class 

“Variation_StructuralMD” was designed to store five 

different structural variations: CNV, DEL, DUP, INS:MT 

and INV. On the other hand, except for the "VT" field of 

the "VariationMD" class, “Variation_StructuralMD” has 

three attributes and these are “ID”, “CS” and “end”. These 

attributes are used to store id of the structural variation, 

source call set, and end coordinate of the variation, 

respectively. 

The "Variation_Structural_ExtendedMD" class was 

designed to hold structural variations of types 

INS:ME:ALU, INS:ME:LINE1 and INS:ME:SVA. This 

class has six fields, except for the "VT" field of the 

"VariationMD" class and the three fields defined in the 

"Variation_StructuralMD" class. The names of these fields 

are “Svlen” (int), “Tsd” (string), “ME” (string), “Start” 

(int), “Mobile_end” (int) and “Polarity” (char). According 

to the order, these fields store the length of the structural 

variation (difference in length between REF and ALT), 

precise target site duplication for bases, mobile element 

name, start and end positions, and the polarity. 

Class Design for Personal Genotypes  

In the previous section, considering only one of the 

chromosome pair, document types were described that can 

hold the variation (haplotype) on any position of the 

chromosome. In this section, document types will be 

explained that can express the variation on any position, 

taking both chromosomes of the chromosome pair (both 

alleles) into consideration. Also, since males have single X 

and single Y chromosomes, the document types that can 

store the variations on these chromosomes were also 

designed.  Consequently, a total of 5 classes are used to 

hold the personal genotype (or haplotype for X and Y 

chromosomes of males) at any position. The designed 

classes, and inheritance and polymorphism relations 

between these classes are shown in Figure-3. As seen from 

the figure, “Variation_PositionMD” is the class (super 

class) at the top of this hierarchy. The class 

"Variation_PositionMD" has a single field, which is an 

integer variable representing the position of the variation 

on the chromosome. It was mentioned in the 

"Personal_Genomes" collection that the "GTs" field of the 

"RegionMD" class holds the variation-based personal 

genotypes/haplotypes and that the data type of this field is 

the "Variation_PositionMD" array. Since 

"Variation_PositionMD" is a super class, objects of all 

other classes descended from this class can be kept in the 

"GTs" field. 

 
Figure 3. Class design for genotypes 

The “Diploid_VariationMD” is one of the classes derived 

from the "Variation_PositionMD" class and, as the name 

implies, it is used in diploid situations. Here, what is meant 

by diploid situations are autosomal chromosomes and sex 

chromosomes of females. Except for the "Pos" field 

inherited from the "Variation_PositionMD" class, the 
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"Diploid_VariationMD" class has two fields. The field 

with the name "GT" is an array of type "VariationMD" and 

thus, it can hold the variations (genotype) on both alleles. 

Thanks to the fact that the class "VariationMD" is a super 

class and that the other classes representing the variation 

types derive from this class, the "Diploid_VariationMD" 

class supports all possible cases. The second field (“I”) of 

this class gives us information about the "GT" field. When 

both alleles are considered, the possibilities that can 

emerge can be expressed as: The existence of the variation 

in only first allele, the existence of the variation in only 

second allele, the existence of the same variation in both 

alleles, and finally, the existence of distinct variations in 

both alleles. Apart from these four main cases, in some 

structural variation types (CNV, DEL, DUP), same 

variation whose only CNA values are different can be 

observed in both alleles. Consequently, there are five 

different cases in total. Accordingly, the "I" field can take 

five different values to support these five different possible 

cases. The field “I” takes the values 0, 1, 2, 3 and 4 for the 

cases above, respectively. There is an important reason for 

adding the "I" field: the idea of saving space. In the case 

that the same variation is seen on both alleles, only one of 

these variations is saved in the "GT" field and "2" is 

assigned to the "I" field to express this case. Also, the 

number of the occurrences of the same variation on both 

alleles is very huge. Therefore, substantial space savings 

are achieved. In addition, the value of the "I" field directly 

indicates the genotype status. Therefore, regardless of the 

"GT" field, information about the alleles (e.g. 

homozygote/heterozygote) can be obtained. 

"Haploid_VariationMD" is another class derived from the 

"Variation_PositionMD" class and it is used to keep the 

variations (haplotypes) detected on the sex chromosomes 

of males. Except for the "Pos" field inherited from super 

class, "Haploid_VariationMD" class has only one field 

("HT"), and this field's data type is "VariationMD". Since 

male sex chromosomes are not diploid, "HT" field can hold 

a variation on any position in a single allele. As in 

"Diploid_VariationMD", the "Haploid_VariationMD" 

class can hold all variation types. 

As stated before, in some structural variation types (CNV, 

DEL, DUP), same variation whose only CNA values are 

different can be observed in both alleles. The classes 

"Diploid_Variation_CNAMD" and 

"Haploid_Variation_CNAMD" were developed to store 

such a genotype/haplotype and they are utilized only for 

the three types of structural variations specified above. In 

fact, these two classes are equivalent. The 

"Diploid_Variation_CNAMD" class is used in diploid 

cases, whereas the "Haploid_Variation_CNAMD" class is 

used in haploid cases. Apart from the fields inherited from 

the upper classes, the class "Diploid_Variation_CNAMD" 

has only one field (“CNA” of type sbyte[]). As might be 

expected, this field holds the CNA (Copy Number Allele) 

values. Finally, the "Haploid_Variation_CNAMD" class 

represents the structural variations (CNV, DEL and DUP) 

detected in male sex chromosomes. 

3. RESULTS AND DISCUSSION 

Testing the database and indexes with real genetic data and 

evaluating the results of the analysis are just as valuable 

and important as designing. For this purpose, the variation 

data published by 1000 Genome Project was used. The 

various physical properties of the computer, where the 

database is installed and which was used to test the system, 

are shown in Table-11. In addition, other 

parameters/technologies related to the database are as 

follows: “MongoDB Community Edition 3.4” version of 

mongo database was used. Besides, “The official 

MongoDB C#/.NET Driver version 2.3” was selected as 

the driver. 

Table 11. The properties of the test computer 

Property Value 

Computer 

name-version 

Asus K55VJ-SX077D 

Operating 

system 

Windows 8.1 Pro 64 bit 

Processor type 

and speed 

Intel(R) Core(TM) i7-3630QM CPU 

@ 2.40GHz (3.40 GHz TB) 

Processor 

cache 

6 MB Intel® Smart Cache 

System 

memory 

(RAM) 

8 GB DDR3 1600 MHz 

Disk capacity 

and speed 

750 GB 7200rpm 

Disk interface 2.5" SATA 

There are two very significant parameters when evaluating 

both No-sql databases and other types of databases: The 

space occupied by the recorded data on the hard disk and 

the average completion times of various queries. In this 

study, the database, which contains the genotypes (on the 

whole-genome) of 2504 individuals and other related data 

(e.g. reference chromosome sequences, generic variations 

and etc.) was meticulously analyzed according to both 

criteria. The size of the space required to store any data in 

the database is a very important criterion for designers. In 

particular, given the fact that human DNA is composed of 

approximately 3.2 billion base pairs, this criterion becomes 

even more important. On the other hand, besides the space 

occupied by variation-based personal genetic data, the size 

of the indices created to speed up the query results should 

also be taken into account. In the light of this information, 

Table-12, which shows the results (space requirements of 

“Personal_Genomes” collection and related indices) of the 

analyses, is shown below. 

Table 12. The spaces occupied by the 

“Personal_Genomes” collection and the related indices 
Gender “Personal_Genomes” 

Collection (MB) 

Index-

1 (KB) 

Index-

2 (KB) 

Index-

3 

(MB) 

Total 

(MB) 

Total 

without 

Index-3 

(MB) 

Female 70.227 18.884 30.651 41.032 111.307 70.275 

Male 69.148 18.675 41.65 55.757 124.964 69.207 
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The values in Table-12 reflect the average of 2504 people. 

That is, the values in the table relate to one person. In 

addition, there are other significant points to be considered 

in this table. The first of these is that the values in the 

columns “Index-1” and “Index-2” are in kilobytes unlike 

the other columns. On the other hand, the index-1 values 

are consistent with the values of the “Personal_Genomes” 

collection, whereas the index-2 and index-3 values are not 

very consistent. The reason of this is related to the way the 

mongo database stores indices. In fact, the most noticeable 

thing on the table is the index-3 values. When the index-3 

values are compared with index-1 and index-2 values, the 

gap between them is clearly visible. Such a huge difference 

is quite surprising, and this issue will be discussed again 

later. As already mentioned, one of the main purposes of 

this study is to keep personal genetic data in the database 

with minimum space requirement. When this case is 

considered, the most important part of the table is the 

values in the last two columns. Due to the special case of 

index-3, two different calculations were made. In the case 

where index-3 is not included in the total, variation-based 

genetic data of a person for the whole genome occupies 

approximately 70 MB in the database. Although the values 

related to index-3 are specified in Table-12, the use of 

index-3 was later abandoned. The reason for the 

abandonment of index-3 will be explained later. 

Besides the size of the space needed to store data, there are 

other important criteria used to evaluate the success of the 

database: The time to save the data into the database, the 

size of the spaces where data is stored in primary memory, 

and the response times of the database to various queries. 

As already mentioned, personal genetic data are recorded 

in the Mongo database in the form of regions. The 

recording times of all regions that make up the genome (in 

short, genome recording times) are nearly 65 and 64 

seconds for female and male, respectively. In fact, all 

regions that make up a person's genome can be recorded in 

the database in one go. In this case, the average recording 

time of the genome will be much less. Besides the space 

where personal genetic data is stored on the hard disk, the 

space they occupy in the primary memory is also extremely 

important. Since the RAM capacity of the computer is 

limited, the fit of the genetic data of as many people as 

possible into the RAM, which is of limited size, means that 

the clinical applications will take less time. In the light of 

this information, the average RAM spaces occupied by the 

objects of type "RegionMD" were calculated. Except for 

the regions of male sex chromosomes, the average size of 

the RAM space occupied by one region is approximately 

0.3 MB. Since male sex chromosomes are haploid, the 

average RAM space occupied by a region belonging to 

these chromosomes is approximately 0.25 MB. The total 

RAM spaces required for the whole-genome of an 

individual are nearly 539 and 531 MBs for female and 

male, respectively. Finally, the total number of regions 

forming these genomes are nearly 1817 and 1799 for 

female and male, respectively. Please note that the values 

specified here are the average of 2504 people (for sex 

chromosomes, average values were computed based on the 

male and female counts). 

Although the time required to store variation-based 

personal genetic data into the database is important, more 

important than this, is the response times of the database to 

various queries that are frequently performed in clinical 

applications. The reason is quite obvious: The personal 

genetic data is recorded once in the database. On the other 

hand, this data can be frequently questioned in clinical 

operations. Here, there are a number of factors that affect 

completion times of the queries. Especially, the elements 

that are directly related to the design, considerably affect 

query performance and data size, depending on the quality 

of the design. In the previous chapter, it was stated that the 

design of the database, related documents and indices was 

carried out in line with the needs of various clinical 

applications. From this point of view, various queries were 

devised that these applications can frequently perform, and 

the related analysis were carried out using these queries. 

The devised queries are shown in Table-13. 

Table 13. The queries utilized to test the indices 

Query 

No 

Explanation 

1) A genotype on a particular position (Chr No:1, 

Position: 196696932) 

2) The genotypes on two close positions (Chr 

No:1, Positions: 196696932, 196659236) 

3) The whole of the region containing the position 

(Chr No:1, Position: 196696932) 

4) Two distant regions containing the positions 

(Chr No:1, Positions: 100, 196696932) 

Table-14 shows both the response times of the database to 

the queries given above and the memory space it used 

while running the queries. Note that the time values in 

Table-14 are in milliseconds and size values are in 

megabytes. In the analyses made to calculate these values, 

the method used is as follows: The computer is restarted 

before each query is run and the query is run when the hard 

disk usage is 0%. The same query is executed a second time 

immediately after (without losing any time) the first query 

is completed. Namely, the same query is run twice in the 

same session. Actually, depending on the number of people 

specified in the query, the same query is run again and 

again (within a loop) for different people. In short, in a 

single session, the actual run count of the query is more 

than 2. This situation is clearly shown in the table. The 

iteration count in the table indicates this. In addition, these 

operations were repeated 10 times for each of the different 

triplets (query, case, index). Therefore, all the values 

shown in the table are average values. On the other hand, 

although there are 2504 people in the database, the number 

of people queried in the analysis is 2500. The reason is that 

2500 can be divided by 5, 25, and 100 (three different cases 

in terms of people count). 
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Table 14. The effect of indices and number of queried people on time and space * 
 Individual Count & Iteration Count (Total = 2500 Individuals) 

500 & 5 (Case-1) 100 & 25 (Case-2) 25 & 100 (Case-3) 

Time Time Space Space Time Time Space Space Time Time Space Space 

Q
u

er
ie

s 
(Q

ry
) 

&
 I

n
d

ex
es

 

Qry-

1 

Indexes 

2&3 

43652 19616 920.4 922.5 45671 19396 939.6 921.7 47127 19711 917 917.5 

Index 2 43557 19197 905.7 905.4 45566 19212 918.7 920 46954 19700 915 915.4 

Index 3 254457 155299 2965 3195 257771 159582 3004 3075 263831 166525 2939 3177 

Qry-

2 

Indexes 

2&3 

248408 204996 3102 3114.3 265887 211644 3027.6 3084.5 282381 207522 3116.3 3142 

Index 2 250324 205160 3014.7 3144.2 260415 209428 3017.4 3098 265353 209142 3012.4 3129.7 

Index 3 1669826 1636897 3164 3485 1677501 1661483 3146 3468 1687321 1662153 3148 3470 

Qry-

3 

Indexes 

2&3 

292056 278209 915.7 915.2 319761 285249 914.9 915 323700 295155 905.4 904 

Index 2 293012 279306 899.4 900.2 317891 285998 899.5 900.3 321647 292626 899.5 900.7 

Index 3 505795 398305 2996 3165 509475 405510 3009 3200 513296 411233 3008 3174 

Qry-

4 

Indexes 

2&3 

777042 751526 2918.3 2994.5 800127 751800 3030.8 3160.5 800499 756581 3112.1 3200.1 

Index 2 775562 746223 2980 2983 798224 747788 2957.7 3120.2 799002 756106 2999 3114 

Index 3 1847894 1815398 3211 3375 1853521 1822988 3177 3441 1873800 1823588 3219 3477 

* Time values are in milliseconds and size values are in megabytes. 

The values in Table-14 allow us to make very important 

inferences. First of all, let us remember the crucial and 

intriguing question about indexes asked in the 

"Personal_Genomes" section: "If the third index fully 

covers the second index, why is the second index needed?". 

Surprisingly, it was observed that index-3 does not provide 

the expected gain, and even, contrary to what is expected, 

increases query times so much more. As seen, there is a 

cliff (in terms of both time and space) between the second 

and third indices. For these reasons, index-3 was 

abandoned. 

The second inference obtained from the values specified in 

Table-14 is related to the queries. Consider query-1 and 

query-2 for case-1. In query-1 section, the first reading 

value for index-2 is 43557. On the other hand, in query-2 

section, the first reading value for index-2 is 250324. That 

is, the query-2 time is almost six times the query-1 time. 

Also, the amount of RAM space used by Mongo database 

is 905.7MB in the first run of query-1, whereas this value 

is 3014.7MB for query-2. Namely, the space utilized for 

query-2 is more than 3 times the space utilized for query-

1. In fact, these two queries are quite similar. The only 

difference between them is that query-1 queries a single 

genotype (at a specific location), whereas query-2 queries 

two genotypes (at two different locations). Furthermore, 

the two positions queried by query-2 are relatively close to 

each other. Therefore, in a certain part of the queried 

people, these two positions are more likely to fall into the 

same region. In short, rather than using Query-2, it makes 

more sense to run query-1 twice for two different positions. 

A similar situation applies to the relation between query-3 

and query-4. 

The third inference made from the results of the analysis is 

related to the number of people queried in each query. The 

increase in the number of people queried in a single 

iteration reduces the total time spent for 2500 people. It  

would be a logical choice to query (in one go) the genetic 

data of as many people as possible in the queries. No 

obvious difference was observed between the cases in 

terms of space. The last inference made from the values is 

that the time spent in the second run of the same query is 

less than the first run. This is true for all queries and all 

cases, but the proportional difference between the times 

required for first run and second run varies depending on 

the query type. 

The recent study [44] of Çakırgöz & Sevinç, published in 

2018, uses relational database to store variation-based 

personal genetic data. In this study, various external data 

formats were designed to hold variations and genotypes, 

and all genotypes of a chromosome were (collectively) 

recorded in the database in the Varbinary binary format and 

in a compressed form. Namely, in this way, 23 and 24 rows 

are used to store variation-based genetic data for the entire 

genome of females and males, respectively. As in our 

study, the proposed method by Çakırgöz & Sevinç (2018) 

was also tested with real data of 2504 people, published by 

1000 Genome Project. On the other hand, although it has 

some limitations (For instance, it does not allow complex 

SQL queries, most transactions are handled at the 

application layer.), the method proposed by Çakırgöz & 

Sevinç (2018) has given the most successful results in 

terms of space requirement among recent similar studies. 

Since it uses the same data set and gives successful results, 

our method was compared with this method using the same 

configurations. The comparison results regarding the space 

requirements are shown in Table-15. Although there is a 

certain difference between the two methods in terms of 

hard disk space requirement, both methods resulted in 

significant space savings. Compared to the space required 

to store the raw sequence data, the proposed method by 

Çakırgöz & Sevinç (2018) yielded a space gain of 99.74%. 

This value is 98.86% for our method. On the other hand, in 

our method, the total RAM spaces required for the whole-

genome of an individual are nearly 539 and 531 MBs for 

female and male, respectively. These values are slightly 
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lower in the other method, but there is no significant 

difference. 

Table 15. Comparison table for size requirements 
Gender Size Requirements on 

Harddisk 

Size Requirements in RAM 

Our 

Method 

Method of Çakırgöz 

& Sevinç (2018) 

Our 

Method 

Method of Çakırgöz 

& Sevinç (2018) 

Female 70.275 

MB 

15.270 MB 538.93 

MB 

496.630 MB 

Male 69.207 

MB 

15.086 MB 531.34 

MB 

484.463 MB 

In the method of Çakırgöz & Sevinç (2018), during the 

process of reading the data stored in the database and 

transforming it into class objects, the data are passed 

through many stages. First, the data held in the form of 

compressed byte array is fetched from the database, then, 

this data is decompressed, and finally, the decompressed 

data is transformed into class objects. According to the 

analysis results (using the same computer configuration), 

these three operations take 340.96 milliseconds for 

chromosome-1 on the average (for one person). For 2500 

people, these three processes take a total of 852400 

milliseconds, not including the time it takes to find the 

region or genotype and return it. So, no matter what query 

type, this time is inevitable. When the Table-14 showing 

the times taken by our method for 4 different query types 

is examined, even query-4 (Index-2, case-1, first run), 

which requires the most time among query types, was 

realized below this time. In other query types, the 

difference is much greater. In short, our method performed 

much better in terms of query times.  

4. CONCLUSION 

In this study, a document-based no-sql database (Mongo) 

was utilized for the organization of variation-based 

personal genetic data, and the space requirements and 

query performances of this database was computed. 

Thanks to both the advantages of no-sql database and our 

class designs that support all types of variation, various 

clinical applications and studies using personal variation 

data will be able to use the data in the database directly 

without the need for any data conversion. 

After the database was created, the personal genetic data of 

2504 people were recorded in the database in the form of 

regions. As a result of the analyses made on the database, 

it was seen that the proposed method provides very 

important gains. The various important gains of the study 

are as follows: Variation-based genetic data of a person for 

the whole genome occupies approximately 70 MB in the 

database. By using this proposed method, the hard disk 

space required to store all the variations in the genome of a 

person is approximately 1.14% of the space required to 

store the raw sequence of this person. In terms of hard disk 

space, this method provides a saving of approximately 

98.86%. Except for the regions of male sex chromosomes, 

the average size of the RAM space occupied by one region 

(containing up to 2500 genotypes) is approximately 0.3 

MB. This value is approximately 0.25 MB for a region of 

male sex chromosomes. On the other hand, the RAM 

spaces required to store the genotypes/haplotypes in the 

whole-genome of a female and male are approximately 538 

MB and 531 MB, respectively. These values are nearly 

8.8% of the space required to store the raw sequence data 

of this person. In terms of RAM space, this method 

provides a saving of approximately 91.2%.   

REFERENCES  

[1] N. J. Schork, “Personalized medicine: time for one-person trials”, 

Nature, 520(7549), 609-611, 2015. 

[2] C. Gonzaga-Jauregui, J. R. Lupski, R. A. Gibbs, “Human genome 

sequencing in health and disease”, Annual review of medicine, 63, 

35-61, 2012. 

[3] 1000 Genomes Project Consortium, “A map of human genome 

variation from population-scale sequencing”, Nature, 467(7319), 

1061, 2010. 

[4] 1000 Genomes Project Consortium, “An integrated map of genetic 

variation from 1,092 human genomes”, Nature, 491(7422), 56-65, 

2012. 

[5] 1000 Genomes Project Consortium, “A global reference for human 

genetic variation”, Nature, 526(7571), 68-74, 2015. 

[6] 1000 Genomes Project Consortium, “An integrated map of 

structural variation in 2,504 human genomes”, Nature, 526(7571), 

75-81, 2015. 

[7] Internet: 1000 Genomes Project Consortium, 

/vol1/ftp/release/20130502/ directory,  

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/, 

05.01.2021. 

[8] Internet: 1000 Genomes Project Consortium, 

/vol1/ftp/release/20130502/supporting/bcf_files directory, 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/suppor

ting/bcf_files, 05.01.2021. 

[9] M. Futema, V. Plagnol, R. A. Whittall, H. A. W. Neil, S. E. 

Humphries, “Use of targeted exome sequencing as a diagnostic tool 

for Familial Hypercholesterolaemia”, Journal of medical genetics, 

49(10), 644-649, 2012. 

[10] P. N. Taylor, E. Porcu, S. Chew, P. J. Campbell, M. Traglia, S. J. 

Brown, Y. Memari, “Whole-genome sequence-based analysis of 

thyroid function”, Nature communications, 6(1), 1-11, 2015. 

[11] International Human Genome Sequencing Consortium, “Finishing 

the euchromatic sequence of the human genome”, Nature, 

431(7011), 931, 2004. 

[12] I. Dunham, E. Birney, B. R. Lajoie, A. Sanyal, X. Dong, M. 

Greven, J. Dekker, et. al., “An integrated encyclopedia of DNA 

elements in the human genome”, Nature. 489, 57–74, 2012. 

[13] Cancer Genome Atlas Research Network, “The cancer genome 

atlas pan-cancer analysis project”, Nature genetics, 45(10), 1113, 

2013. 

[14] G. F. Gao, J. S. Parker, S. M. Reynolds, et. al., “Before and after: 

comparison of legacy and harmonized TCGA genomic data 

commons’ data”, Cell systems, 9(1), 24-34, 2019. 

 

 



402  BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 14, SAYI: 4, EKİM 2021 

[15] J. Carrot-Zhang, N. Chambwe, J. S. Damrauer, et. al., 

“Comprehensive analysis of genetic ancestry and its molecular 

correlates in cancer”, Cancer Cell, 37(5), 639-654, 2020. 

[16] Internet: Cancer Genome Atlas Research, GDC, 

https://portal.gdc.cancer.gov/, 05.01.2021. 

[17] H. Li, J. Ruan, R. Durbin, “Mapping short DNA sequencing reads 

and calling variants using mapping quality scores”, Genome 

research, 18(11), 1851-1858, 2008. 

[18] H. Li, R. Durbin, “Fast and accurate short read alignment with 

Burrows–Wheeler transform”, Bioinformatics, 25(14), 1754-1760, 

2009. 

[19] R. Li, Y. Li, K. Kristiansen, J. Wang, “SOAP: short 

oligonucleotide alignment program”, Bioinformatics, 24(5), 713-

714, 2008. 

[20] K. Chen, J. W. Wallis, M. D. McLellan, et. al., “BreakDancer: an 

algorithm for high-resolution mapping of genomic structural 

variation”, Nature methods, 6(9), 677-681, 2009. 

[21] D. C. Koboldt, K. Chen, T. Wylie, et. al., “VarScan: variant 

detection in massively parallel sequencing of individual and pooled 

samples”, Bioinformatics, 25(17), 2283-2285, 2009. 

[22] H. Li, B. Handsaker, A. Wysoker, et. al., “The sequence 

alignment/map format and SAMtools”, Bioinformatics, 25(16), 

2078-2079, 2009. 

[23] A. McKenna, M. Hanna, E. Banks, et. al., “The Genome Analysis 

Toolkit: a MapReduce framework for analyzing next-generation 

DNA sequencing data”, Genome research, 20(9), 1297-1303, 

2010. 

[24] J. Dean, S. Ghemawat, “MapReduce: simplified data processing on 

large clusters”, Communications of the ACM, 51(1), 107-113, 

2008. 

[25] Internet: VCFtools, https://vcftools.github.io/specs.html, 

05.01.2021. 

[26] S. Grumbach, F. Tahi, “Compression of DNA sequences”, 

DCC93: Data Compression Conference, 340-350, IEEE, 1993. 

[27] E. Rivals, J. P. Delahaye, M. Dauchet, “A guaranteed compression 

scheme for repetitive DNA sequences”, Data Compression 

Conference, 453-453, IEEE Computer Society, March, 1996. 

[28] A. Apostolico, S. Lonardi, S. “Compression of biological 

sequences by greedy off-line textual substitution”, DCC 2000, 

Data Compression Conference, 143-152, IEEE, March, 2000. 

[29] X. Chen, S. Kwong, M. Li, “A compression algorithm for DNA 

sequences and its applications in genome comparison”, Genome 

informatics, 10, 51-61 1999. 

[30] S. Christley, Y. Lu, C. Li, X. Xie, “Human genomes as email 

attachments”, Bioinformatics, 25(2), 274-275, 2009. 

[31] D. A. Wheeler, M. Srinivasan, M. Egholm, et. al., “The complete 

genome of an individual by massively parallel DNA sequencing”, 

Nature, 452(7189), 872-876, 2008. 

[32] S. Kuruppu, S. J. Puglisi, J. Zobel, “Relative Lempel-Ziv 

compression of genomes for large-scale storage and retrieval”, 

International Symposium on String Processing and 

Information Retrieval, Springer, Berlin, Heidelberg, October, 

201-206, 2010. 

[33] M. D. Cao, T. I. Dix, L. Allison, C. Mears, “A simple statistical 

algorithm for biological sequence compression”, Data 

Compression Conference (DCC'07), 43-52, IEEE, March, 2007. 

[34] V. Mäkinen, G. Navarro, J. Sirén, N. Välimäki, “Storage and 

retrieval of highly repetitive sequence collections”, Journal of 

Computational Biology, 17(3), 281-308, 2010. 

[35] K. Shvachko, H. Kuang, S. Radia, R. Chansler, “The hadoop 

distributed file system”, IEEE 26th symposium on mass storage 

systems and technologies (MSST), 1-10, IEEE, May, 2010. 

[36] J. Dean, S. Ghemawat, “MapReduce: a flexible data processing 

tool”, Communications of the ACM, 53(1), 72-77, 2010. 

[37] H. Nordberg, K. Bhatia, K. Wang, Z. Wang, “BioPig: a Hadoop-

based analytic toolkit for large-scale sequence data”, 

Bioinformatics, 29(23), 3014-3019, 2013. 

[38] A. Schumacher, L. Pireddu, M. Niemenmaa, et. al., “SeqPig: 

simple and scalable scripting for large sequencing data sets in 

Hadoop”, Bioinformatics, 30(1), 119-120, 2014. 

[39] M. S. Wiewiórka, A. Messina, A. Pacholewska, et. al., “SparkSeq: 

fast, scalable and cloud-ready tool for the interactive genomic data 

analysis with nucleotide precision”, Bioinformatics, 30(18), 2652-

2653, 2014. 

[40] M. Masseroli, P. Pinoli, F. Venco, et. al., “GenoMetric Query 

Language: a novel approach to large-scale genomic data 

management”, Bioinformatics, 31(12), 1881-1888, 2015. 

[41] M. Zaharia, M. Chowdhury, T. Das, et. al., “Resilient distributed 

datasets: A fault-tolerant abstraction for in-memory cluster 

computing”, 9th {USENIX} Symposium on Networked Systems 

Design and Implementation, 15-28, 2012. 

[42] V. Bafna, A. Deutsch, A. Heiberg, et. al., “Abstractions for 

genomics”, Communications of the ACM, 56(1), 83-93, 2013. 

[43] C. Kozanitis, A. Heiberg, G. Varghese, V. Bafna, “Using Genome 

Query Language to uncover genetic variation”, Bioinformatics, 

30(1), 1-8, 2014. 

[44] O. Çakirgoz, S. Sevinc, “Organization of Variation Based Personal 

Genetic Data with Relational Database”, International Journal of 

InformaticsTechnologies, 11(3), 295–307, 2018. 

 


