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ÖZ: Temel düzeyde ancak oldukça karmaşık istatistiksel teorilerin anlaşılması, temellerinde yatan denklemleri ve 
teoriyi anlamak için yardımcı etkileşimli teknolojik araçlar gerektirebilir. Bu çalışmada, tahmin, puanlama ve çok 
boyutluluk gibi bazı temel ancak karmaşık madde tepki kuramı kavramlarını göstermek veya keşfetmek için 
interaktif web uygulamaları koleksiyonu sunulmuştur. İnteraktif web uygulamaları shiny R paketi kullanılarak 
oluşturulmuştur. Kullanıcılar bu uygulamalara hem irtDemo R paketinden hem de bu çalışmada verilen linkleri 
kullanarak erişebilirler. Bu uygulamaların, gelişmiş ölçme konularıyla ilgilenen uygulayıcılara ve araştırmacılara 
başlangıç için bir avantaj sağlayacağını düşünülmektedir. 

Anahtar sözcükler: madde tepki kuramı, çok boyutlu madde tepki kuramı, maksimum olabilirlik kestirimi, 
beklenen sonsal yetenek kestirimi, maksimum sonsal yetenek kestirimi 
 
ABSTRACT: Comprehension of foundational but fairly complex statistical theories may require assistive 
interactive tools to understand underlying equations and theory. We provide a collection of interactive web 
applications to demonstrate or explore some of the fundamental yet complex item response theory concepts such 
as estimation, scoring and multidimensionality. Interactive web applications were developed via shiny R package. 
Users can access to these applications through irtDemo R package or links provided in this article. We hope that 
these applications give a head-start to emerging practitioners and researchers interested in advanced measurement 
topics. 

Keywords: item response theory, multidimensional item response theory, maximum likelihood estimation, 
expected a posteriori ability estimation, maximum a posteriori ability estimation 
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1. INTRODUCTION 

Recent research has demonstrated the effectiveness of computer-based activities in helping 
students to better comprehend statistical concepts (Braun, White, & Craig, 2014). Further, Garfield and 
Ben-Zvi (2007) assert that knowledge retention and student enjoyment will increase when traditional 
statistical instruction is supplemented with interactive applications that allow for exploration of statistical 
results. While statistical concepts can be explored by directly manipulating R code and observing the 
results, this process can be cumbersome and confusing to students, especially those who are new to the 
R environment. The shiny R package (Chang et al., 2017) converts complex R code into a simple 

interface that allows users to interact with and explore various concepts by varying parameters and 
visualizing output. Thus, the shiny R package (Chang et al., 2017) is a pedagogical tool that has great 

potential for elevating student knowledge, especially regarding topics as dense and advanced as item 
response theory (IRT).  

The aim of this study is to introduce theoretical underpinnings for fundamental yet complex IRT 
concepts and provide pedagogical web applications for graduate students and scholars. We introduce 
five such applications that are intended to demonstrate and visualize the concepts of estimation, scoring, 
and multidimensionality. These applications were developed for classroom instruction using the R 
statistical software program (R Core Team, 2019) and the shiny R package (Chang et al., 2017). Users 
can access to these applications using irtDemo R package (Bulus & Bonifay, 2016) with the simple R 

interface or RStudio. Alternatively, applications can also be accessed through links provided in this 
article.  

We do not intend to provide an elaborate introduction to the theory underlying web applications. 
We briefly summarize key equations and introduce applications for five fundamental yet complex IRT 
concepts: maximum likelihood estimation (MLE) of person location in a Rasch model given item 
difficulties, MLE in the 2PL model, MLE in the 3PL Model, expected a posteriori (EAP) and maximum 
a posteriori (MAP) ability scoring, and multidimensional dichotomous IRT models. They are described 
below.  

 

2. APPLICATIONS 

Applications can be accessed through irtDemo R package. The package can be installed using 
the install.packages("irtDemo") command in the R environment. It should be loaded into the 
current R session using the library(irtDemo) command. 

 

 

 

 

 

 

# Install the package 
install.packages("irtDemo") 
# Load into the current R session 
library(irtDemo) 
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Application 1: Maximum Likelihood Estimation (MLE) of Person Location in a Rasch Model 
Given Item Difficulties 

Conceptual Underpinnings 

The theory and concepts underlying MLE of the person location in Rasch model is mostly drawn 
from De Ayala (2013), however a more elaborate explanation can be found in Baker and Kim (2004). In 
the Rasch model, for a person 𝑗 with ability 𝜃 , probability of endorsing an item 𝑖 with difficulty 𝛿  can 

be modeled as  

𝑃 𝑥 𝜃 , 𝛿
𝑒

1 𝑒
 (1) 

where 𝑥  is an indicator variable taking a value of 1 for correct endorsement and 0 for incorrect 

endorsement. There are often more than one item, therefore endorsing multiple item creates patterns such 
as 𝑥  = 10110 which indicates that the 𝑗th person endorsed the firsts item correctly, the second item 

incorrectly and so on. The patterns observed in the data is often less than number of examines. In light 
of independence assumption, the likelihood of a given pattern 𝑥  for a person with ability 𝜃  is 

𝐿 𝑥 𝜃 , 𝛿 𝑃 1 𝑃  (2) 

where 𝑛 is number of items, 𝑃  is abbreviated version of  𝑃 𝑥 𝜃 , 𝛿  for item 𝑖 out of convenience, 

which was described in Equation 1. In this illustration, however, item difficulties are assumed to be 
known, therefore only the person location on the ability scale (𝜃 ) is maximized. The more the number 

of items the smaller the likelihood gets which poses problems for optimization because of miniscule 
increments in the likelihood function in Equation 2. Therefore, to avoid range restrictions, this function 
is log-transformed in terms of log-likelihood as 

𝐿𝐿 𝑥 𝜃 , 𝛿 𝑥 log 𝑃 1 𝑥 log 1 𝑃  (3) 

In theory, we can try a finite set of plausible values to find the location of 𝜃 that maximizes 𝐿𝐿 𝑥 𝜃 , 𝛿  

function in Equation 3, but this is impossible in practice because 𝜃 is continuous. Thus, there are infinite 
plausible values. There are two main shortages for this theoretical approach: (i) it is computationally 
intensive, (ii) we do not obtain standard error for 𝜃 . Therefore, in practice a software would focus on a 

feasible region via Tylor series expansion around a point. In more concrete terms, an iterative Newton-
Raphson / Fisher scoring procedure is used to find the maximum of log-likelihood over the range of 𝜃 
parameter space. Note that in this case there is a single equation at each iteration and a single unknown 
(𝜃 , therefore Newton-Raphson equations can be constructed as  

𝜃 𝜃
𝑓 𝜃

𝑓 𝜃
 (4) 

where 𝑓 𝜃  𝐿𝐿 𝑥 𝜃 , 𝛿 , which was defined in Equation 3. Equation 4 means that if we have an 

initial guess (starting value) we can improve the guess by adding (or subtracting depending on the sign) 
the ratio of the slope (first derivative) to the change in slope (second derivative). As the algorithm 
approaches to the maximum this ratio becomes small, which means a small number is added or 
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subtracted. This iteration continues until a desired degree of accuracy, say below 0.0001. This dynamic 
ratio of the first derivative to the second derivative is called the step size. In the context of Rasch 
modeling, the first and second derivative of the log-likelihood function are 

𝜕𝐿𝐿 𝑥 𝜃, 𝛿
𝜕𝜃

𝑟 𝑃

𝜕  𝐿𝐿 𝑥 𝜃, 𝛿
𝜕 𝜃

𝑃 1 𝑃  

(5) 

where 𝑟  is observed score that is number of correctly endorsed items given response pattern for person 

𝑗. Then, the Newton-Raphson equation becomes  

𝜃  𝜃
𝑟 ∑ 𝑃

∑ 𝑃 1 𝑃
 (6) 

Note that the nominator in the second terms in Equation 6 is observed (𝑟  minus expected (∑ 𝑃 ) 

score for person 𝑗, and the denominator is a function of the information in the scalar form as we are 
interested in only person location. From this information, we can get standard errors for 𝜃 , since minus 
reciprocal of the information is variance for 𝜃 . We want to continue iteration until the step size satisfies 

a pre-specified threshold, say 0.0001. Newton-Raphson iterations are expected to continue until 
difference between observed and expected person score is minimal, while we have highest information 
possible. This will be 𝜃  at which the 𝑥  response pattern for the person is most likely to occur. 

 

Application 

This application helps users to demonstrate, explore, and visualize the concept of maximum 
likelihood estimation (MLE) in Rasch models. This is a topic that is central to IRT but the non-
interactive, equation-based explanations found in textbooks are often daunting to students and other users 
who are new to statistical estimation. By using the intuitive slider controls rather than typing in syntax, 
the user will be able to: visualize the concepts of convergence and divergence as the estimation algorithm 
successfully locates or fails to locate the person ability (θ) parameter; and explore the influence of 
unreasonable starting values and aberrant scores on maximum likelihood estimation.  

Users can run Application 1 via running the R command below. They can also access the same 
application via https://irtdemo.shinyapps.io/mlest/. 

 

 

# Maximum likelihood estimation 
irtDemo(“mle”) 
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Figure 1: Maximum likelihood estimation in the Rasch model 

 

To illustrate MLE in Rasch models, this application replicates the analysis presented in de Ayala 
(2009, p. 22), wherein the person location (𝜃 ) parameter is estimated given the item locations of a five 

item math test. Using slider controls, users can manipulate three inputs and observe various estimation 
concepts as well as the pitfalls inherent in MLE. The first input is the respondent’s raw score, the second 
input is the starting value for the estimation algorithm, and the third input is the number of estimation 
iterations. The change in 𝜃  between iterations, the log-likelihood statistics, the acute angle with the 

abscissa, and the estimated person ability for that particular iteration are superimposed on the plot to 
reinforce the aforementioned concepts. Students can be asked to address the following questions:  

Which raw score require more iterations?  

Can you find a case where the algorithm diverges?  

Can you find a case where the algorithm converges?  

What happens to the change in 𝜃  when number of iterations increase?  

What happens to convergence when estimating extreme scores such as zero (0)?  

What happens when starting values deviate from the actual solution unreasonably?  

Similarly to the estimation paradigm for person location (𝜃 ), we can find item difficulties 𝛿  

at which log-likelihood of a pattern is maximized given the vector of examinee location estimates (𝜃). 
In reality, both are unknown so the algorithm take turns via fixing one of the item parameter or person 
parameter at the provisional value (often starting values for the first iteration) until the log-likelihood 
function is maximized jointly. This two-stage estimation is referred to as joint maximum likelihood 



irtDemo R Package: Pedagogical Interactive Web Applications for Estimation, Scoring, and Multi Dimensionality in Item 
Response Theory     97 

Anadolu University Journal of Education Faculty (AUJEF), 6(1), 92-108 

estimation (Birnbaum, 1968). Although this may work well with Rasch models, it tends to be problematic 
with smaller samples and complex models with two or more item parameters to be optimized. There are 
other more complex estimation paradigms such as conditional maximum likelihood estimation 
(Andersen, 1972), marginal maximum likelihood estimation (Bock and Atkin, 1981; Bock and 
Lieberman, 1970), Bayesian estimation which are described in Baker & Kim (2004). Recently for more 
complex models Metropolis-Hastings Robbins-Monro algorithm has been proposed by Cai (2010). 
Explanation of these estimation paradigms are beyond the scope of this illustration, however for more 
information readers are referred to references. 

 

Application 2: Maximum Likelihood Estimation in the 2PL Model 

Conceptual Underpinnings 

Below we summarize the theory and concepts underlying the Application 2 which are mostly 
drawn from de Ayala (2013). In the 2PL model, for a person 𝑗 with ability 𝜃  probability of endorsing an 

item 𝑖 with location (difficulty) 𝛿 , and item discrimination 𝛼  can be modeled as  

𝑃 𝑥 𝜃 , 𝛿 , 𝛼
𝑒

1 𝑒
 (7) 

where 𝑥  is an indicator variable taking a value of 1 for correct endorsement and 0 for incorrect 

endorsement for examinee 𝑗 and item 𝑖, 𝛼  is item discrimination for item 𝑖 and provides information as 
to how well an item differentiates examinees with different abilities. 

Similar to the Rasch model in Application 1, in light of independence assumption, the likelihood 
of a pattern 𝑥  given person ability 𝜃  is 

𝐿 𝑥 𝜃 , 𝛿, 𝛼 𝑃 1 𝑃  (8) 

where 𝑛 is number of items, 𝑃  is abbreviated version of  𝑃 𝑥 𝜃 , 𝛿 , 𝛼  for convenience. Contrary to 

Application 1, in this illustration, examinees’ location are assumed to be known, therefore item location 
on the ability scale 𝛿  and discrimination 𝛼  are simultaneously maximized. For similar reasons in 
Application 1, that is, to avoid range restrictions this function is log-transformed as  

𝐿𝐿 𝑥 𝜃 , 𝛿, 𝛼 𝑥 log 𝑃 1 𝑥 log 1 𝑃  (9) 

To keep matters simple, we do not go in to details of Newton-Raphson equations. However, one may 
come to realize that Newton-Raphson equations consist of two equations with partial derivatives with 
respect to 𝛿 and 𝛼 parameters.  
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Application 

This application is the same as Application 1, though it allows users to investigate a slightly 
more complex IRT model: the two-parameter logistic (2PL) model. This application will help the user 
to grasp the complexity of estimating one additional parameter (i.e., the discrimination parameter) as 
compared to the Rasch model; understand that the 2PL MLEs are found by searching across a 3-
dimensional surface rather than a line; and explore the influence of item discrimination on the estimation 
of item location.  

Users can run Application 2 via running the R command below. They can also access the same 
application via https://irtdemo.shinyapps.io/est2pl/. 

 

 

 

Figure 2: Maximum likelihood estimation in 2PL model 

 

The 2PL MLE application simulates 50 responses to an item with discrimination and location 
parameters determined by the user. Two additional inputs enable the user to change the orientation of 
the 3D plot to get a better perspective of the estimated item parameters at which the log-likelihood 
function in Equation 9 is maximized. To keep matters simple, in this application we do not go into details 
of Newton-Raphson equations. However, one may come to realize that Newton-Raphson equations 
consist of two equations with partial derivatives with respect to 𝛿 and 𝛼 parameters. In the application 
we only use empirical finite values to draw the 3D plot. Unlike Application 1, the search would have 
followed a funnel-like zigzag beginning from starting values and narrowing down to the point of 
maximum.   

 

# Maximum likelihood estimation in 2PL model 
irtDemo(“est2pl”) 
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Application 3: Maximum Likelihood Estimation in the 3PL Model 

Conceptual Underpinnings 

In the 3PL model, for a person 𝑗 with ability 𝜃  probability of endorsing an item 𝑖 with location 

(difficulty) 𝛿 , and item discrimination 𝛼 , and guessing parameter 𝑐  can be modeled as  

𝑃 𝑥 𝜃 , 𝛿 , 𝛼 , 𝑐 𝑐
𝑒 𝑐

1 𝑒
 (10) 

where 𝑥  is an indicator variable taking a value of 1 for correct endorsement and 0 for incorrect 
endorsement for examinee 𝑗 and item 𝑖. Similar to Application 1 and 2 the likelihood of a pattern 𝑥  for 
a person with ability 𝜃  in light of independence assumption is 

𝐿 𝑥 𝜃 , 𝛿, 𝛼, 𝑐 𝑃 1 𝑃  (11) 

where 𝑛 is number of items, 𝑃  is abbreviated version of  𝑃 𝑥 𝜃 , 𝛿 , 𝛼 , 𝑐  for convenience and was 

defined in Equation 10. Similar to Application 2, in this illustration examinees’ location are assumed to 
be known, therefore item location on the ability scale 𝛿 , discrimination 𝛼 , and guessing parameter 𝑐  
are simultaneously is maximized. Log-likelihood takes the form of 

𝐿𝐿 𝑥 𝜃 , 𝛿, 𝛼, 𝑐 𝑥 log 𝑝 1 𝑥 log 1 𝑝  (12) 

In this application, to keep matters simple, we do not go in to details of Newton-Raphson equations. 
However, one should get the intuition that in this case the Newton-Raphson equations consist of three 
partial derivatives with respect to 𝛿, 𝛼 and 𝑐 parameters. In the application we only use empirical finite 
values to draw the 3D plot, layers representing the 4th dimension.  

Application 

Application 3 aids in understanding estimation of the three-parameter logistic (3PL) model 
(Birnbaum, 1968), one of the most common, yet complex model used in practice today for the analysis 
of dichotomous response data. In particular, this application will help the user to comprehend the 
complexity of estimating an additional parameter – the lower asymptote, or “guessing” parameter – as 
compared to the 2PL model; and realize that 3PL MLEs are searched through a four-dimensional space.  

Users can run Application 3 via running the R command below. They can also access the same 
application via https://irtdemo.shinyapps.io/est3pl/ 

 

 

# Maximum likelihood estimation in 3PL model 
irtDemo(“est2pl”) 
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Figure 3: Maximum likelihood estimation in 3PL model 

 

Application 3 simulates 50 responses to an item with discrimination, location, and lower 
asymptote parameters determined by the user. The legend has several plausible values for lower 
asymptote, so that the user can compare the lower asymptote specified in the slider to the plausible values 
in the legend. Each plausible value is maximized with respect to discrimination and location. In other 
words, each surface plot is the feasible region for a given plausible lower asymptote. As in the 2PL MLE 
application, the user also has the ability to change the orientation of the perspective plot and thereby gain 
a better understanding of the estimated item parameters at which the log-likelihood function in Equation 
12 is maximized in the 3PL model.  

 

Application 4: EAP and MAP Scoring 

Conceptual Underpinnings 

The likelihood function was defined in Application 1, however in this case the likelihood is 
estimated via quadrature along the continuum of the ability scale. Thus, the function takes the form of 

𝐿 𝑥 𝑞, 𝛿 𝑃 1 𝑃  (13) 

where 𝑞 is the quadrature point on the ability scale. As we need to find likelihood along the continuum 
of the ability scale, the likelihood has to be estimated for each plausible value on the ability scale. This 
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requires integration. In practice, this is conducted via numerical integration, as such, ability scale is 
divided uniformly by a pre-determined number of points called quadrature. Then the likelihood function 
in Equation 13 is computed for each quadrature point and summed across. As the number of quadrature 
points increases, the likelihood distribution is represented more correctly. However, there is a trade-off 
between correct representation of likelihood function and computational burden. Often quadrature points 
around 40 is sufficient for simple models, and is specified as 41 by default in this illustration.  The prior 
information is taken into consideration via multiplying likelihood function by prior distribution weights 
as 

𝑓 𝜃 𝑞 𝐿 𝑥 𝑞, 𝛿 𝐴 𝑞  (14) 

where 𝑓 𝜃  is estimated posterior distribution density for examinee 𝑖, 𝐴 𝑞  is calculated form prior 
density by dividing probability of each quadrature point with the overall probability of all quadrature 
points. The EAP can be found as 

𝜃
∑ 𝑞 𝐿 𝑥 𝑞, 𝛿 𝐴 𝑞

𝐿 𝑥 𝑞, 𝛿 𝐴 𝑞
 (15) 

and MAP is the value on the posterior distribution that has the maximum 𝑓 𝜃  defined in Equation 14. 
Again as we do not know the examinee’s location, we work on the full candidates of values for the 
examinee location along the continuum. Plots are drawn using finite values, and to make matters simple 
MAP estimates are obtained by brute force, however the rationale of the MLE in Application 1 applies 
to this section as well. 

Application 

Application 4 demonstrates Expected a Posteriori (EAP, Bock & Mislevy, 1982) and Maximum 
a Posteriori (MAP, Birnbaum, 1969) scoring techniques in the Rasch model. This is illustrated by 
replicating the analysis presented in de Ayala (2009, p. 79), in which the person location is estimated 
given the item locations of the five math items. In particular, this application allows users to: understand 
how the posterior distribution is obtained; differentiate between EAP and MAP estimation; realize that 
the ability for extreme responses can be estimated unlike with ML estimation in Application 1; visualize 
the concept of quadrature as it is used in IRT estimation; observe that MAP scores are more sensitive to 
characteristics of the prior distribution and the number of quadrature points; understand that increasing 
the number of quadrature points will result in a smoother posterior and thus more precise EAP and MAP 
estimates.  

Users can run Application 4 via running the R command below. They can also access the same 
application via https://irtdemo.shinyapps.io/eapmap/. 

 

 

# Expected a posteriori and 
# maximum a posteriori ability estimation 
irtDemo(“eapmap”) 
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Figure 4: Scoring (with separate plots) 

The plot in Figure 4 has four panels. The first panel on the upper-left corner is the prior 
distribution of the 𝜃 divided into quadrature intervals for computational ease. The larger number of 
quadrature points the smoother the prior distribution of 𝜃. The location and shape of this distribution 
depends on the prior mean, prior standard deviation (SD) and prior skewness (values that can be 
manipulated by the user using slider controls). The second plot on the upper-right corner demonstrates 
items tracelines, which are probability of endorsing the given category (1 or 0) for each item in the raw 
score vector (e.g. 00011, this value can be manipulated using slider control on the left panel). The third 
plot on the lower-left corner demonstrates likelihood function given the raw score pattern, and the fourth 
plot on the lower-right corner is the posterior distribution of 𝜃, which is the product of the prior 
distribution and the likelihood function. EAP and MAP estimates are shown on the third plot.  

 
Figure 5: Scoring (with combined plot) 
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In another panel, the plot in Figure 5 juxtaposes prior, likelihood and posterior distributions. 
Posterior distribution is rescaled for comparability because product of prior and likelihood result in a 
relatively smaller distribution on the same scale. Prior and posterior means are shown the figure.  

 

Application 5: Multidimensional Dichotomous IRT Models 

Conceptual Underpinnings  

In the previous application, it was assumed that to endorse an item correctly a test taker’s ability 
level for a particular domain should be sufficient (unidimensional). There are cases where knowledge in 
more than one domain is required so that the test taker would endorse an item correctly.  For example 
some math problems may require solid understanding of the text, in which the test taker’s ability should 
be high both in math knowledge and reading comprehension. In this case the measurement model is said 
to be multidimensional. Considering multidimensional 4 PL (M4PL) model, for the compensatory model 
in general form, probability of endorsing an item 𝑗 correctly for subject 𝑖 given a set of ability levels for 
two dimensions (𝜃 , 𝜃 ), a set of item discriminations for each of the two dimensions (𝛼 , 𝛼 ), and the 
intercept (𝛾 ) is 

𝑃 𝑥 1 𝜃 , 𝜃 , 𝛼 , 𝛼 , 𝛾 𝑐 𝑑 𝑐
𝑒

1 𝑒
 (16) 

and for the non-compensatory (or partially compensatory) model the probability function is defined as  

𝑃 𝑥 1 𝜃 , 𝜃 , 𝛼 , 𝛼 , 𝛾 𝑐 𝑑 𝑐
𝑒

1 𝑒

𝑒

1 𝑒
 (17) 

where 𝑐 and 𝑑 are lower and upper asymptotes respectively, 𝐷 is constant which is 1 for logistic function 
and 1.702 for normal approximation, and the intercept is defined as a function of discrimination and 
difficulty parameters as 𝛾 𝛼 𝛿 𝛼 𝛿  for the compensatory model, and 𝛾 𝛼 𝛿  and 
𝛾 𝛼 𝛿  for the non-compensatory model. Note that when 𝑐 0 and 𝑑 1 the 

multidimensional model becomes M2PL model, when 𝑐 0 and 𝑑 1 it becomes M3PL, and finally 
when 𝑐 0 and 𝑑 1 it becomes M4PL.  

Multidimensional difficulty index is defined as Δ  where 𝐴 𝛼 𝛼  and is 

multidimensional discrimination. The item direction (represented by an arrow) on the contour plot for 
the compensatory model is determined from the angle 𝜔 arccos 𝛼 /𝐴 . So the arrow representing 
a multidimensional item starts from the origin and ends in abscissa Δ 𝐴 cos 𝜔  and ordinate Δ
𝐴 sin 𝜔 . This is not so straight forward for the non-compensatory models, so it is not shown on the 
plot. Information function is defined as 𝐼 𝜃 𝐴 𝑃 1 𝑃  where 𝑃 is short form of probability 

function in Equation 16 or 17.   

Application 

This application is not related to estimation or scoring but have been produced to channel a 
complex concept in IRT. The final application allows users to explore an item response surface (IRS) by 
manipulating hypothetical person locations and item discrimination and location parameters for each 
latent trait in a multidimensional item response theory (MIRT) (Bonifay, 2019; Reckase, 2009 ) model. 
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In particular, this application will help the user to identify differences in the IRS of dichotomous MIRT 
models; differentiate between compensatory and non-compensatory MIRT models; examine 
discrepancies between logistic and normal ogive MIRT formulations; observe the influence of item 
location and discrimination parameters on the IRS; and rotate the IRS to gain a better perspective of the 
precise shape of the 3-dimensional surface. 

Users can run Application 5 via running the R command below. They can also access the same 
application via https://irtdemo.shinyapps.io/mirt/. 

 

 

 
Figure 6: Item response surface 

 

There are three panels; the plot in the first panel shows the IRS, the plot in the second panel 
shows the contour plot based on the IRS, and the plot in the third panel shows the information plot. These 

# Multidimensional item response theory 
irtDemo(“mirt”) 
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plots change based on the parameters specified with slider controls in the panel on the left side. The first 
plot in Figure 6 shows probability of endorsing the correct category given both ability levels (e.g. math 
and reading). Since probability is a function of two dimensions, instead of a traceline, the response plot 
is a surface. The orientation and peakedness of this surface depends on each ability level, discrimination, 
lower- and upper-asymptote. 

 

 
Figure 7: Contour plot tab 

 

The second plot in Figure 7 is the contour plot for the IRS in Figure 6. The contour plot is a 
useful technique to project a three dimensional plot onto a two dimensional plot. The IRS in Figure 6 is 
sliced through horizontally with equal probability intervals, and the intersection of the slices with the 
plot is projected onto the two dimensional space. This is useful to demonstrate the vector representing 
an item as function of parameters on the left panel.  
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Figure 8: Information plot tab 

 

The third plot in Figure 8 shows the information surface. The function to draw this information 
surface is described in “Conceptual Underpinnings” section. It shows the ability levels at which the 
information for the item is maximized.  

 

4. SUMMARY 

Statistics instruction can benefit from interactive R-based applications that supplement the 
traditional teaching of abstract theorems and equations. The IRT applications described in here will 
enable students and other users to investigate fundamental estimation and scoring procedures and 
multidimensional response functions in detail. Not only will this improve comprehension of potentially 
complicated topics and techniques, it will also prepare students to be insightful applied researchers who 
are aware of the advantages and disadvantages that exist in various approaches to estimation and scoring.   

This study contributes to the body of pedagogical statistical applications targeting audience of 
advanced and complicated measurement topics. It does not aim to provide an interface for data analysis 
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of IRT models of any kind. Applications 1 and 4 are limited in the sense that they employ specific 
estimation algorithms based on examples provided in de Ayala (2009) for Rasch models. Applications 2 
and 3 use brute force to find maximum points based on 50 simulated responses, whereas in practice 
maximum points are found using derivatives akin to Application 1.   

 

 

  



108         Metin BULUS & Wes BONIFAY 

Anadolu University Journal of Education Faculty (AUJEF), 6(1), 92-108 

 REFERENCES 

Anderson, E. B. (1972). The numerical solution of a set of conditional estimation equations. Journal of the Royal 

Statistical Society, Series B, 34, 42-54. 

Baker, F.B., & Kim, S.H. (2004) Item Response Theory: Parameter Estimation Techniques (2nd Ed.), CRC Press, 

Boca Raton. 

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In F. M. Lord and 

M. R. Novick (Eds.), Statistical theories of mental test scores (pp. 397-472), Reading, MA: Addison-

Wesley. 

Birnbaum, A. (1969). Statistical theory for logistic mental test models with a prior distribution of ability. Journal 

of Mathematical Psychology, 6(2), 258-276. 

Bock, R. D., & Mislevy, R. J. (1982). Adaptive EAP estimation of ability in a microcomputer environment. Applied 

Psychological Measurement, 6(4), 431-444. 

Braun, J. W., White, B. J., & Craig, G. (2014). R tricks for kids. Teaching Statistics, 36, 7–12.  

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: An application of 

an EM algorithm. Psychometrika, 46, 443-459. 

Bock, R. D., & Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psychometrika, 

35, 179-197. 

Bulus, M., & Bonifay, W. (2016). irtDemo: Item response theory demo collection. R package version 0.1.2. 

https://CRAN.R-project.org/package=irtDemo 

Cai, L. (2010). Metropolis-Hastings Robbins-Monro algorithm for confirmatory item factor analysis. Journal of 

Educational and Behavioral Statistics, 35(3), 307-335. 

Chang, W., Cheng, J., Allaire, J., Xie, Y., & McPherson, J. (2017). shiny: Web Application Framework for R. R 

package version 1.0.3. https://CRAN.R-project.org/package=shiny  

De Ayala, R. J. (2013). The theory and practice of item response theory. Guilford Publications. 

Garfield, J., and Ben-Zvi, D. (2007). How students learn statistics revisited: a current review of research on teaching 

and learning statistics. International Statistical Review, 75, 372–396.  

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria. https://www.R-project.org. 

Reckase, M. D. (2009). Multidimensional item response theory models. In multidimensional item response 

theory (pp. 79-112). New York, NY: Springer. 

 

 

 

 


