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Abstract

We study the decomposition of Hardy-Morrey spaces via atoms and molecules, which have
similar properties of H p

∆ν
(Rn

+) Hardy spaces. Then we introduce the HMp
q,∆ν

boundedness
of B-Riesz transforms generated by a generalized translate operator that is associated to the
Laplace Bessel operator for 0 < p≤ 1 < q≤ ∞ with p 6= q through atomic decomposition
and molecular characterization.

1. Introduction

The notion of classical Hardy-Morrey space HMp
q originates from Jia and Wang [1, 2]. Since then, this theory received

continuous development and now is increasingly mature; see, for example [3]-[5].
It is well known that the classical Hardy-Morrey space generalizes both Morrey (Mp

q ,q > 1) and Hardy (H p , p≤ 1) spaces
[6]. It plays important roles in several fields of harmonic analysis and PDEs. Also, these spaces are important because they
have close relations with Lp spaces, Hardy spaces and BMO−1 spaces, and etc.
In recent years, studies in the classical theory of Hardy-Morrey spaces related to some operators have gained great interest and
importance. Therefore, our study focused on these spaces. Similar results in other function spaces can be developed in this
spaces. These results can be seen in decomposition of Hardy-Morrey spaces, decomposition of Hardy-Morrey spaces with
weighted, and decomposition of weighted Hardy-Morrey spaces with variable exponent in [1],[3]-[5].
In this paper, our main purpose is to prove that some properties of Hardy-Morrey spaces, and Hardy-Morrey characterization of
the operators depend on conditions via atoms can be obtained. For example, the boundedness of an singular integral operators
can be often proved by estimating Ta when a is an atom. While it is generally not true that atoms are mapped into atoms,
for many convolution type operators Ta is a function enjoying many of the properties of atoms. Such functions were called
molecules. Moreover, classical Hardy spaces and Hardy-Morrey spaces have molecular characterizations that are completely
analogous to their atomic characterizations.
We define Hardy-Morrey spaces called HMp

q,∆ν
Hardy-Morrey spaces which was similar with Hardy spaces associated to the

following Laplace-Bessel differential operator [7]

∆ν :=
n

∑
i=1

∂ 2

∂x2
i
+

ν

xn

∂

∂xn
, ν > 0.

The main conclusion of this article is to prove that the B-Riesz transformation defined in (4.1) is a bounded operator from
Hardy-Morrey spaces HMp

q,∆ν
to Hardy-Morrey spaces HMp

q,∆ν
. Here R(k)

ν ,B-Riesz transform related to Laplace-Bessel
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differential operator ∆ν . This operator has been studied by many mathematicians on weighted Lebesgue spaces (see [8]-[11]).
Even though the boundedness of B-Riesz transform is well known for 1 < p < ∞ on Lebesgue spaces, we cannot say for
0 < p < 1 on Lebesgue spaces. But these transformations are bounded in Hardy spaces for 0 < p < 1 (see [7]). Therefore, in
this study, a new characterization of the B-Riesz transform obtained by generalized translation has been obtained for 0 < p≤ 1
in Hardy-Morrey spaces HMp

q,∆ν
.

We investigate the Hardy-Morrey spaces characterizing boundedness properties of related Riesz transforms called B-Riesz
transforms. These operators give us the most popular examples of Calderon-Zygmund singular integral operators. Also these
transforms are related to generalized translate operator. Furthermore, they present some applications especially in the area of
partial differential equations. To characterize the boundedness of these transforms, we apply the atomic decomposition. By
using this decomposition we give the molecular characterizations for HMp

q,∆ν
Hardy-Morrey spaces. We follow the ideas in [7]

to obtain the boundedness of high order B-Riesz transforms on HMp
q,∆ν

Hardy-Morrey spaces at the end of Section 4 as an
application of our main result. For this reason, we pass by other characterizations of HMp

q,∆ν
Hardy-Morrey spaces.

The remainder of this paper is structured as follows. The HMp
q,∆ν

Hardy-Morrey spaces are introduced, also their atomic
decompositions are given in Section 2. In Section 3, we will give appropriate definition of molecule is given. We will show
that each such molecule has an atomic decomposition. As an application, we present the B-Riesz transforms and give its
boundedness properties on HMp

q,∆ν
Hardy-Morrey spaces extending the results in [7].

Throughout this paper, we denote dyadic cubes with Q or J. Moreover, C indicates constant depending on n,ν , p,q.

2. Preliminaries

Let Rn be the n dimensional Euclidean space and Rn
+ = {x = (x′,xn)∈Rn : xn > 0}. We write x = (x′,xn), x′ = (x1, . . . ,xn−1)∈

Rn−1, E(x, t) = {y ∈ Rn
+ ; |x− y|< t} and E(x, t)c = Rn

+\E(x, t). Let us take a measurable set E on Rn
+, we can define

|E|ν =
∫

E
xν

n dx,

where ν > 0. Denoting |E(0,r)|ν = ω(n,ν)rn+ν , where

ω(n,ν) =
∫

E(0,1)
xν

n dx =
π

n−1
2 Γ
(

ν+1
2

)
2Γ
( n+ν−2

2

) .

The generalized translate operator T y is defined by

T y f (x) = cν

∫
π

0
. . .
∫

π

0
f
(
x′− y′,(xn,yn)θ

)
dν(θ), (2.1)

where cν =
π−

1
2 Γ
(

ν+1
2

)
Γ
(

ν

2

) , (xn,yn)θ =
√

x2
n−2xnyn cosθ + y2

n, dν (θ) = sinν−1
θ dθ [9, 10, 12, 13]. Note that the generalized

translate operator is closely connected with ∆ν -Laplace-Bessel differential operator denoted by

∆ν =
n−1

∑
i=1

∂ 2

∂x2
i
+Bxn , Bxn =

∂ 2

∂x2
n
+

ν

xn

∂

∂xn
, ν > 0.

The Bxn -convolution operator related to T y is defined by

( f ⊗g)(x) =
∫
Rn
+

f (y)T yg(x)yγ
ndy.

Let Lp
ν = Lp

ν(Rn
+) be the space of measurable functions with a finite norm

‖ f‖Lp
ν
=

(∫
Rn
+

| f (x)|pxν
n dx
)1/p

is denoted by Lp
ν ≡ Lp

ν(Rn
+), 1 ≤ p < ∞. We denote by S ′

+ = S ′
+

(
Rn
+

)
the topological dual of S+ is the collection of all

tempered distributions on Rn
+.

First, let’s start by giving the definition of Morrey space [14, 15].

Definition 2.1. For p and q satisfying 0 < q≤ p < ∞, the homogeneous Morrey spaces Mp
q are defined as

Mp
q =

{
f ∈ Lq

loc : || f ||Mp
q
= sup

x∈Rn,R>0
|B(x,R)|

1
p−

1
q || f ||Lq(B(x,R)) < ∞

}
,

where B(x,R) is the closed ball of Rn with center x and radius R.
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Let j ∈ Z, k ∈ Zn. The set

Q jk =
{

x ∈ Rn : 2− jki ≤ xi ≤ 2− jki+1, i = 1,2, . . .n
}
,

is called a dyadic cube. We remark that

|| f ||Mp
q
≈ sup

J:dyadic
|J|

1
p−

1
q || f ||Lq(J).

We now introduce the Hardy-Morrey spaces that we work mainly on and give their decomposition results.
The HMp

q,∆ν
Hardy-Morrey spaces is given by the set of all distributions f ∈S+ \P with the quasi-norm

|| f ||HMp
q,∆ν

=
∣∣∣∣sup

t>0
|φt ⊗ f |

∣∣∣∣
Mp

q,ν

is finite. Here φ ∈S+(Rn
+) satisfies

∫
φ(x)xν

n dx = 1. Also, P indicates the set of polynomials.
For the Hardy-Morrey space, if 1 < p ≤ q ≤ ∞, it is obvious that HMp

q,∆ν
= Mp

q,∆ν
since the Hardy-Littlewood maximal

operator associated with the Laplace-Bessel differential operator ∆ν is bounded on Mp
q,ν . Moreover, the HMp

q,∆ν
Hardy-Morrey

spaces cover Hardy spaces for 0 < p≤ 1. In general, H p
∆ν

= HMp
p,∆ν
⊂ HMp

q,∆ν
for p≤ q≤ ∞ and HMp

1,∆ν
6= Mp

1,∆ν
. Here ,

the Hardy spaces H p
∆ν

are defined by

H p
∆ν

=

{
|| f ||H p

∆ν

=
∥∥sup

t>0
φt ⊗ f

∥∥
Lp

< ∞

}
[2].
Now, let us start with to give the definition of (p,q,s)-atoms.

Definition 2.2. Let 0< p≤ 1< q≤∞ with p 6= q and s∈N∪{0}. For a dyadic cube Q, a function aQ is called a (p,q,s)-atom
of HMp

q,∆ν
if the following properties are satisfied:

(i) aQ be supported on a cube Q, namely, supp aQ ⊂ Q,

(ii) ‖aQ‖Lq,ν ≤ |Q|
1
q−

1
p

ν ,
(iii)

∫
Rn
+

aQ(x)xα xν
n dx = 0 for all s≥ [(n+ k+ν)

( 1
p −1

)
],1≤ k ≤ n, with |α| ≤ s.

Also, we introduce atomic decomposition theorem in HMp
q,∆ν

space is as follows:

Theorem 2.3. Let 0 < p≤ 1 < q≤∞ with p 6= q, {aQ : Q dyadic} be a collection of (p,q,s)-atoms and {λQ : Q dyadic} be a
sequence of scalars with

||λ ||p,q =
{

sup
J

(
1
|J|ν

)1−p/q

∑
Q⊂J
|Q|1−p/q

ν |λQ|p
}1/p

< ∞.

Then the sum

f = ∑
Q

λQaQ (2.2)

converges in S
′
+ \P and f ∈ HMp

q,∆ν
with || f ||HMp

q,∆ν

≤C||λ ||p,q, where C = C(n, p,q,ν). Conversely, ∀ f ∈ HMp
q,∆ν

has

atomic decomposition (2.2) in S
′
+ \P . Here aQ are (p,q,s)-atoms and λ = {λQ} satisfies ||λ ||p,q ≤C|| f ||HMp

q,∆ν

, where
C > 0 independent of f .

Proof. The proof of Theorem 2.3 can be found in [1, 16], so we omit it here.

3. Molecular characterizations of HMp
q,∆ν

Next, we continue to give the notion of molecule related to HMp
q,∆ν

. The following definition for molecule is modified from
the corresponding definition of molecule from [2].

Definition 3.1. Let 0 < p ≤ 1 < q ≤ ∞ with p 6= q, s = [(n+ k + ν)
( 1

p − 1
)
] and ε > (n+ k + ν)

( 1
p −

1
2

)
,1 ≤ k ≤ n. A

measurable function mQ(x) is called a (p,q,s,ε)-molecule for a dyadic cube Q if and only if

(i)
(∫

Rn
+
|mQ(x)|2(1+ |x− xQ|ν/`Q)

2sxν
n dx
)1/2 ≤ |Q|1/2−1/p

ν , (this means that `Q is large )
(ii)

∫
Rn
+

mQ(x)xα xν
n dx = 0, |α| ≤ s.
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Similar to the atomic decomposition of HMp
q,∆ν

Hardy-Morrey space, the decomposition in terms of molecule is given as
follows:

Theorem 3.2. Let 0 < p ≤ 1 < q ≤ ∞ with p 6= q and ε > (n+ k + ν)
( 1

p −
1
2

)
. There is exists a sequence of scalars

{λQ : Q dyadic}, a collection of (p,q,s,ε)-molecules {mQ : Q dyadic} for HMp
q,∆ν

, the series

f = ∑
Q

λQmQ (3.1)

converges in S
′
+ \P and f ∈ HMp

q,∆ν
with

|| f ||HMp
q,∆ν

≤C||λ ||p,q,

where C > 0 independent of f .

Proof. The proof of this theorem has a similar technique to those of [2, 17, 18]. Let us start with consider the sets

E0 = {x ∈ Rn
+ : |x| ≤ σ}

E j = {x ∈ Rn
+ : 2 j−1

σ ≤ |x|< 2 j
σ}, j = 1,2, . . . ,

where σ
(n+k+ν)

(
1
p−

1
2

)
= ||λ ||−1

p,2. Set m j = mχE j , where χE j is the characteristic function of E j. For all j = 1,2, . . ., α a
multi-index such that |α| ≤ s, let ϕα

j be the function on E j (the restriction to E j of a polynomial of degree at most s). If
Pj = ϕ jχ j then

∫
Rn
+

(m j−Pj)xα xν
n dx = 0, |α| ≤ s.

Since m = ∑
∞
j=0 m j = ∑(m j−Pj)+∑Pj, to show both ∑(m j−Pj) and ∑Pj in HMp

q,∆ν
, it suffices to verify that

(i) each (m j−Pj) is a multiple of a (p,q,s)-atom with coefficients sum appropriately,
(ii) the sum ∑Pj can be written as an infinite liner combination of (p,∞,s)-atom with coefficients sum appropriately.

For a dyadic cube Q, we define E0 = Q and for all j ≥ 1, Q j = 2 jQ and E j = Q j−Q j−1. For j ≥ 0, let {ϕα
E j

: |α| ≤ s} (or
{Φα

E j
: |α| ≤ s}, respectively) be the Gram-Schmidt orthonormalization of monomials {xα : |α| ≤ s}(or the dual basis of

monomials {Φα
E j

: |α| ≤ s}, respectively) on E j according to the weight 1/|E j|ν . We consider the function ϕα
E j

to be defined
on Rn, having the value zero outside E j. (namely, if x /∈ E j, then we set Φα

E j
(x) = 0.) By homogeneity and the uniqueness of

Gram-Schmidt orthogonalization process (see [18]), we obtain the following estimate

|ϕα
E j
(x)| ≤C, for x ∈ E j, (3.2)

and

|Φα
E j
(x)| ≤C(2 j

σ)−|α|, (3.3)

where C depends on s. Let mQ be a molecule function. We set mE j(x) = mQ(x)χE j(x) and

PE j(x) = PE j(mQ)(x) = ∑
|α|≤s

aα
E j

ϕ
α
E j
(x) = ∑

|α|≤s
mα

E j
Φ

α
E j
(x), (3.4)

where

aα
E j

=
∫

mE j(x)ϕ
α
E j
(x)xν

n
dx
|E j|ν

,mα
E j

=
∫

mE j(x)x
α xν

n
dx
|E j|ν

.

From [19], we obtain ∫
(mE j −PE j)x

α xν
n dx = 0, for all |α| ≤ s,

||mE j −PE j ||L2
ν (E j)

≤ C||mE j ||L2
ν (E j)

(3.5)

We may write a decomposition of the molecule mQ(x) as folllows

mQ(x) =
∞

∑
j=0

(mE j −PE j)(x)+
∞

∑
j=0

PE j(x). (3.6)
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By the equality (3.4), and the cancellation properties of the molecule, we get

∞

∑
j=0

PE j(x) =
∞

∑
j=0

∑
|α|≤s

(
Φα

E j+1

|E j+1|ν
−

Φα
E j

|E j|ν

)
EQ j,α , (3.7)

here

EQ0,α = ∑
j≥0

∫
mE j(x)x

α xν
n dx =

∫
m(x)xα xν

n dx = 0,

EQ j,α =
∞

∑
i= j

∫
mE j(x)x

α xν
n dx =

∫
|x|≥2 jσ

mQ(x)xα xν
n dx, for all j ≥ 1.

By using (3.6) and (3.7), we may write

mQ(x) =
∞

∑
j=0

tQ j aQ j(x)+ ∑
j≥0

∑
|α|≤s

δQ j,α bQ j,α (x), (3.8)

where for each j ≥ 0

tQ j = ||mE j −PE j ||L2
ν (E j)
|Q j|

1
p−

1
2

ν , aQ j(x) =
(mE j −PE j)(x)
||mE j −PE j ||L2

ν (E j)

|Q j|
1
p−

1
2

ν ,

and

λQ j,α = EQ j,α |Q j|
1
p−1
ν (2 j

σ)−|α|, bQ j,α (x) =
(

Φα
E j+1

|E j+1|ν
−

Φα
E j

|E j|ν

)
|Q j|

1− 1
p

ν (2 j
σ)|α|.

From the inequalities (3.2), (3.3) and (3.5), it can be easily seen that aQ j and bQ j,α are supported in a cube Q j and they are
(p,q,2)-atoms and (p,q,∞)-atoms respectively. For simplicity, we now just consider the sum (3.1) is finite. Then by (3.8), we
obtain

f = ∑
Q, j

λQtQ j aQ j(x)+∑
Q, j

λQ ∑
|α|≤s

δQ j,α bQ j,α (x) (3.9)

in S ′(Rn
+). Let J be a fixed dyadic cube. We consider the following equality

∑
Q j⊂J
|λQtQ j |

p|Q j|1−p/q
ν = ∑

Q⊂J
|λQ|p ∑

j:Q j⊂J
|tQ j |

p|Q j|1−p/q
ν .

By the Hölder’s inequality, (3.5) and ε > (n+ k+ν)
( 1

p −
1
2

)
, we find that

∑
j:Q j⊂J

|tQ j |
p|Q j|1−p/q

ν ≤C|Q|1−p/q
ν . (3.10)

Combining (3.9) and (3.10), we get ∣∣∣∣∣∣∣∣∑
Q, j

λQtQ j

∣∣∣∣∣∣∣∣
HMp

q,∆ν

≤C||λ ||p,q. (3.11)

From an argument similar to that used in above (3.9)-(3.11), it also follows that∣∣∣∣∣∣∣∣∑
Q

∑
j≥0

∑
Q, j

λQtQ j

∣∣∣∣∣∣∣∣
HMp

q,∆ν

≤C||λ ||p,q. (3.12)

Combining the inequalities (3.11) and (3.12), we end of the proof if the sum (3.1) is finite. Also, this sum converges in the
sense of distributions.

With the above theorem, we are ready to give the following section which offers an important estimates for Hardy-Morrey
spaces related to Laplace-Bessel operator used in the proof of our main result.
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4. The B-Riesz transform on Hardy-Morrey spaces HMp
q,∆ν

In this section, we restrict ourselves to the high order B-Riesz transforms and give its boundedness properties on Hardy-Morrey
spaces. We recall the high order B-Riesz transform.

Definition 4.1. ([8, 9]) Let 1≤ p < ∞ and f ∈ Lp
ν . B-Riesz transform of f with high order is defined

R(k)
ν ( f )(x) = Ck,ν

[
p.v
( Pk(y)
|y|n+k+ν

⊗ f
)]
(x), 1≤ k ≤ n,

= Ck,ν
[

p.v
(
K⊗ f

)]
(x)

= Ck,ν lim
ε→0

∫
ε<|y|

Pk(y)
|y|n+k+ν

T y f (x)yν
n dy, (4.1)

where Ck,ν = 2
n+ν

2 Γ( n+k+ν

2 )
[
Γ( k

2 )
]−1 and Pk(y) = Pk(y1,y2, . . . ,yn−1,y2

n) is a homogeneous polynomial of degree k which
holds4ν Pk(y) = 0 on Rn

+. Also, the following two conditions are satisfied for this polynomial:∫
S+

Pk(θ)(θ
′
)ν dθ = 0 (4.2)

and

sup
θ∈S+
|Pk(θ)|= M < ∞, (4.3)

here S+ = {y ∈ Rn
+ : |y|= 1} and θ = y

|y| . Also, here T y denotes the generalized translate operator given in (2.1).

Before establishing the B-Riesz transform characterization of HMp
q,∆ν

(Rn
+), we first introduce some background on this kernel

of this transform.
Let R(k)

ν f := K⊗ f be defined as in (4.1). There exists a bounded distribution function K(x) with |Fν [K(x)]| ≤C. We give the
following equality

Fν [R
(k)
ν f ](x) = ikPk(x)|x|−kFν( f )(x)

for all f ∈ L2
ν . Here, for any f ∈S (Rn

+), we use Fν f to denote its Fourier-Bessel transform, which is defined by setting

Fν f (x) =
∫
Rn
+

f (y)e−i(x′y′) j ν−1
2
(xnyn) yν

n dy, for all x ∈ Rn
+,

where (x′y′) = x1y1 + . . .+xn−1yn−1, jν , (ν >−1/2) is Bessel function and Cn,ν = (2π)n−12ν−1Γ2((ν +1)/2) = 2
π

ω(2,ν).
This transform is also associated with Laplace-Bessel differential operator.
Moreover, K(x) satisfies the following Hörmander’s condition,∫

|x|≥A1|y|

|T yK(x)−K(x)|xν
n dx≤ A2, (4.4)

for some A1,A2 < ∞ (See more detail [20]). So, we conclude that property (4.4) and the L2
ν -boundedness of R(k)

ν f maps
HMp

q,∆ν
to itself for 0 < p≤ 1 < q≤ ∞ with p 6= q.

However, we make stronger assumption on kernel, that is K ∈C∞(Rn
+ \{0}) satisfies for all |α| ≤ s and x 6= 0,

|Dα
ν T yK(x)| ≤ AM|x|−n−k−ν−|α|.

We also have the following Lp
ν and H p

∆ν
boundedness of high order B-Riesz transform.

Theorem 4.2. ([8, 21]) Let Pk be the characteristic of the singular integral (4.1) satisfiying the conditions (4.2) and (4.3).
Then there exists a constant C > 0 such that for all 1 < p < ∞ and ν > 0

‖R(k)
ν ( f )‖Lp

ν
≤CM‖ f‖Lp

ν
,

where C is a constant independent of f and Pk is a homogeneous polynomial of degree k.

Theorem 4.3. ([7]) Let R(k)
ν f := K⊗ f and 0 < p≤ 1. Then there exists a constant C∗n,p,ν such that for all f ∈ H p

∆ν

‖K⊗ f‖H p
∆ν ,at
≤C∗n,p,ν‖ f‖H p

∆ν ,at
ν > 0.



Fundamental Journal of Mathematics and Applications 133

The following main theorem demonstrate B-Riesz characterization of HMp
q,∆ν

Hardy-Morrey spaces.

Theorem 4.4. Let 0 < p ≤ 1 < q ≤ ∞ with p 6= q. Then B-Riesz transform can be extended to the bounded transform on
Hardy-Morrey spaces HMp

q,∆ν
.

Proof. In order to prove this theorem, it is sufficient to show R(k)
ν ( f ) is a (p,q,s,ε)-molecule whenever f is a (p,q,s)-atom.

We prove this theorem by following the similar strategy used in [7]. Let us take the function supported in the upper half ball
B(0,1) with

∫
ϕ(x)xn

ν dx on Rn
+. We define K(t) = ϕt ⊗K. Then the function K(t) satisfies the following inequalities

sup
t>0

Fν(K(t))(x)≤C||Fν ϕt ||L∞
ν

and

sup
t>0

(K(t))(x)≤Cϕ M|x|−n−k−ν−|α|, |α| ≤ s .

For a dyadic cube Q, mQ(x) be a (p,q,s)-molecule and aQ be a (p,q,s)-atom of HMp
q,∆ν

. Finally, the proof rests on the

checking that mQ(x) = R(k)
ν (aQ)(x) satisfies the moment and size condition. Namely,

(i)
(∫

Rn
+
|R(k)

ν aQ(x)|2(1+ |x− xQ|ν/σ)2sxν
n dx
)1/2 ≤ |Q|1/2−1/p

ν ,

(ii)
∫
Rn
+

R(k)
ν aQ(x)xα xν

n dx = 0, |α| ≤ s.

So, we omit the details and leave it to the reader.

5. Conclusion

In this study, the decomposition of Hardy-Morrey spaces related to the Laplace-Bessel differential operator are introduced in
terms of atoms and molecules. Also, we give the HMp

q,∆ν
boundedness of higher order B-Riesz transforms for 0 < q≤ p < ∞

by using this atomic decomposition and molecular characterization. We follow the similar approach for developing the atomic
decomposition and molecular characterization as classical Hardy-Morrey spaces. The interesting of our result depends on the
existence of the different differential operator.
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