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Abstract. In this study, we consider a boundary value problem generated by

the Sturm-Liouville equation with a frozen argument and with non-separated

boundary conditions on a time scale. Firstly, we present some solutions and
the characteristic function of the problem on an arbitrary bounded time scale.

Secondly, we prove some properties of eigenvalues and obtain a formulation for
the eigenvalues-number on a finite time scale. Finally, we give an asymptotic

formula for eigenvalues of the problem on another special time scale: T =

[α, δ1] ∪ [δ2, β].

1. Introduction

A Sturm-Liouville equation with a frozen argument has the form

−y′′(t) + q(t)y(a) = λy(t),

where q(t) is the potential function, a is the frozen argument and λ is the complex
spectral parameter. The spectral analysis of boundary value problems generated
with this equation is studied in several publications [3], [15], [16], [26], [33] and
references therein. This kind problems are related strongly to non-local boundary
value problems and appear in various applications [4], [12], [31] and [38].

A Sturm-Liouville equation with a frozen argument on a time scale T can be
given as

− y∆∆(t) + q(t)y(a) = λyσ(t), t ∈ Tκ2

(1)

2020 Mathematics Subject Classification. 45C05, 34N05, 34B24, 34C10.
Keywords. Dynamic equations, time scales, measure chains, eigenvalue problems, Sturm-
Liouville theory.

zeynepdurna14@gmail.com; 0000-0002-3810-4740

sozkan@cumhuriyet.edu.tr-Corresponding author; 0000-0002-9703-8982.

©2022 Ankara University
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

720



EIGENVALUE PROBLEMS FOR A CLASS OF STURM-LIOUVILLE OPERATORS 721

where y∆∆ and σ denote the second order ∆-derivative of y and forward jump
operator on T, respectively, q(t) is a real-valued continuous function, a ∈ Tκ :=

T\ (ρ (supT) , supT] , yσ(t) = y(σ(t)) and Tκ2

= (Tκ)
κ
.

Spectral properties the classical Sturm-Liouville problem on time scales were
given in various publications (see e.g. [1], [2], [5]- [9], [11], [17]- [25], [27]- [30], [34]-
[37], [39] and references therein). However, there is no any publication about the
Sturm-Liouville equation with a frozen argument on an arbitrary time scale.

In the present paper, we consider a boundary value problem which is generated
by equation (1) and the following boundary conditions

U(y) : = a11y (α) + a12y
∆ (α) + a21y (β) + a22y

∆ (β) (2)

V (y) : = b11y (α) + b12y
∆ (α) + b21y (β) + b22y

∆ (β) (3)

where α = inf T, β = ρ(supT), α ̸= β and aij , bij ∈ R for i, j = 1, 2. We aim to
give some properties of some solutions and eigenvalues of (1)-(3) for two different
cases of T

For the basic notation and terminology of time scales theory, we recommend to
see [10], [13], [14] and [32].

2. Preliminaries

Let S(t, λ) and C(t, λ) be the solutions of (1) under the initial conditions

S(a, λ) = 0, S∆(a, λ) = 1, (4)

C(a, λ) = 1, C∆(a, λ) = 0, (5)

respectively. Clearly, S(t, λ) and C(t, λ) satisfy

S∆∆(t, λ) + λSσ(t, λ) = 0

C∆∆(t, λ) + λCσ(t, λ) = q(t),

respectively and so these functions and their ∆-derivatives are entire on λ for each
fixed t (see [34]).

Lemma 1. Let φ(t, λ) be the solution of (1) under the initial conditions φ(a, λ) =
δ1, φ

∆(a, λ) = δ2 for given numbers δ1, δ2. Then φ(t, λ) = δ1C(t, λ) + δ2S(t, λ) is
valid on T.

Proof. It is clear that the function y(t, λ) = δ1C(t, λ) + δ2S(t, λ) is the solution of
the initial value problem

y∆∆(t) + λyσ(t) = q(t)δ1

y(a, λ) = δ1

y∆(a, λ) = δ2.

We obtain by taking into account uniqueness of the solution of an initial value
problem that y(t, λ) = φ(t, λ). □
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Consider the function

∆(λ) : det

(
U(C) V (C)
U(S) V (S)

)
. (6)

It is obvious ∆(λ) is also entire.

Theorem 1. The zeros of the function ∆(λ) coincide with the eigenvalues of the
problem (1)-(3).

Proof. Let λ0 be an eigenvalue and y(t, λ0) = δ1C(t, λ0) + δ2S(t, λ0) is the corre-
sponding eigenfunction, then y(t, λ0) satisfies (2) and (3). Therefore,

δ1U(C(t, λ0)) + δ2U(S(t, λ0)) = 0,

δ1V (C(t, λ0)) + δ2V (S(t, λ0)) = 0.

It is obvious that y(t, λ0) ̸= 0 iff the coefficients-determinant of the above system
vanishes, i.e., ∆(λ0) = 0. □

Since ∆(λ) is an entire function, eigenvalues of the problem (1)-(3) are discrete.

3. Eigenvalues of (1)-(3) on a Finite Time Scale

Let T be a finite time scale such that there are m (or r) many elements which
are larger (or smaller) than a in T. Assume m ≥ 1, r ≥ 0 and r+m ≥ 2. It is clear
that the number of elements of T is n = m+ r + 1. We can write T as follows

T =
{
ρr (a) , ρr−1 (a) , ..., ρ2 (a) , ρ (a) , a, σ(a), σ2(a), ..., σm−1(a), σm(a)

}
,

where σj = σj−1 ◦ σ, ρj = ρj−1 ◦ ρ for j ≥ 2, ρr (a) = α and σm−1(α) = β.

Lemma 2. i) If r ≥ 3 and m ≥ 2, the following equalities hold for all λ

S(α, λ) = (−1)
r
µρ (a)

[
µρ2

(a)µρ3

(a) ...µρr

(a)
]2

λr−1 +O
(
λr−2

)
Sσ(α, λ) = (−1)

r−1
µρ (a)

[
µρ2

(a)µρ3

(a) ...µρr−1

(a)
]2

λr−2 +O
(
λr−3

)
S (β, λ) = Sσm−1

(a, λ) = (−1)
m
[
µ (a)µσ (a) ...µσm−3

(a)
]2

λm−2µσm−2

(a) +O
(
λm−3

)
Sσ (β, λ) = Sσm

(a, λ) = (−1)
m+1

[
µ (a)µσ (a) ...µσm−2

(a)
]2

λm−1µσm−1

(a) +O
(
λm−2

)
C (α, λ) = (−1)

r
[
µρ (a)µρ2

(a) ...µρr

(a)
]2

λr +O
(
λr−1

)
Cσ (α, λ) = (−1)

r−1
[
µρ (a)µρ2

(a) ...µρr−1

(a)
]2

λr−1 +O
(
λr−2

)
C(β, λ) = Cσm−1

(a, λ) = (−1)
m
µ (a)

[
µσ (a)µσ2

(a) ...µσm−3

(a)
]2

µσm−2

(a)λm−2 +O
(
λm−3

)
Cσ(β, λ) = Cσm

(a, λ) = (−1)
m+1

µ (a)
[
µσ (a)µσ2

(a) ...µσm−2

(a)
]2

µσm−1

(a)λm−1 +O
(
λm−2

)
,
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where O(λl) denotes a polynomial whose degree is l.

ii) If r ∈ {0, 1, 2} or m ∈ {0, 1}, degrees of all above functions are vanish.

Proof. It is clear from fσ(t) = f(t)+µ(t)f∆(t) that Sσ(a, λ) = µ(a) and Cσ(a, λ) =
1. On the other hand, since S(t, λ) and C(t, λ) satisfy (1) then the following equal-
ities hold for each t ∈ Tκ and for all λ.

Sσ2

(t, λ) =

(
1 +

µ (t)

µσ(t)
− λµ (t)µσ (t)

)
Sσ (t, λ) (7)

−µσ (t)

µ(t)
S(t, λ)

Cσ2

(t, λ) =

(
−µ (t)µσ (t)λ+ 1 +

µ (t)

µσ(t)

)
Cσ(t, λ) (8)

−µσ (t)

µ(t)
C(t, λ) + µ (t)µσ (t) q(t)

It can be calculated from (7) and (8) that

Sσj

(a, λ) = (−1)
j+1

(
µ(a)µσ(a)...µσj−2

(a)
)2

µσj−1

(a)λj−1 (9)

+O
(
λj−2

)
Sρj

(a, λ) = (−1)
j
µρ(a)

(
µρ2

(a)µρ3

(a)...µρj

(a)
)2

λj−1 (10)

+O
(
λj−2

)
Cσk

(a, λ) = (−1)
k+1

µ (a)
(
µσ (a)µσ2

(a) ...µσk−2

(a)
)2

µσk−1

(a)λk−1 (11)

+O
(
λk−2

)
Cρk

(a, λ) = (−1)
k
(
µρ (a)µρ2

(a) ...µρk

(a)
)2

λk (12)

+O
(
λk−1

)
for j = 2, 3, ...m and k = 2, 3, ..., r. Using (9)-(12) and taking into account α =
ρr (a) and β = σm−1(α) we have our desired relations. □

Corollary 1. degC(α, λ)Sσ (β, λ) =

{
r +m− 1, r > 0 and m > 1
1, the other cases

.

Lemma 3. The following equlaties hold for all λ ∈ C.

Sσ(α, λ)C (α, λ)− S(α, λ)Cσ (α, λ) = Aλδ +O
(
λδ−1

)
Sσ (β, λ)C (β, λ)− S(β, λ)Cσ (β, λ) = Bλγ +O

(
λγ−1

)
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where A = (−1)
r
µ (α)µρ (a)

[
µρ2

(a) ...µρr−1

(a)
]2

µρr

(a) q (α),

B = (−1)
m−1

µ (β)
[
µ (a)µσ (a) ...µσm−2

(a)
]2

q (ρ (β)),

δ =

{
r − 2, r ≥ 3
0, r < 3

and γ =

{
m− 2, m ≥ 3
0, m < 3.

Proof. Consider the function

φ (t, λ) :=
1

µ (t)
[Sσ(t, λ)C (t, λ)− S(t, λ)Cσ (t, λ)] (13)

It is clear that

φ (t, λ) :=
[
S∆(t, λ)C (t, λ)− S(t, λ)C∆ (t, λ)

]
= W [C (t, λ) , S (t, λ)]

and it is the solution of initial value problem

φ∆ (t) = −q (t)Sσ (t, λ)

φ (a) = 1

Therefore, we can obtain the following relations

φσ (t, λ) = φ (t, λ)− µ (t) q (t)Sσ (t, λ) , (14)

φρ (t, λ) = φ (t, λ) + µρ (t) q (ρ (t))S (t, λ) . (15)

By using (9), (10), (14) and (15), the proof is completed. □

Corollary 2. i) deg (Sσ (α, λ)C(α, λ)− S (α, λ)Cσ (α, λ)) < degC(α, λ)Sσ (β, λ) ,

ii) deg (Sσ (β, λ)C (β, λ)− S (β, λ)Cσ (β, λ)) < degC(α, λ)Sσ (β, λ) .

The next theorem gives the number of eigenvalues of the problem (1)-(3) on T.
Recall n = m+ r + 1 denotes the number of elements of T and put

A =

(
a11µ (α)− a12 b11µ (α)− b12

a22 b22

)
.

Theorem 2. If detA ̸= 0, the problem (1)-(3) has exactly n− 2 many eigenvalues
with multiplications, otherwise the eigenvalues-number of (1)-(3) is least than n−2.
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Proof. Since T is finite, ∆(λ) is a polinomial and its degree gives the number
eigenvalues of the problem. It can be calculated from (6)-(14) that

∆(λ) =
1

µ (α)µ (β)
det

(
a11µ (α)− a12 b11µ (α)− b12

a22 b22

)
C(α, λ)Sσ (β, λ)

+
1

µ (α)
det

(
a11 a12
b11 b12

)
(Sσ (α, λ)C(α, λ)− S (α, λ)Cσ (α, λ))

+
1

µ (β)
det

(
a21 a22
b21 b22

)
(Sσ (β, λ)C (β, λ)− S (β, λ)Cσ (β, λ))

+O(λn+m−2).

According to Corollary 1 and Corollary 2, if detA ̸= 0,
deg∆(λ) = degC(α, λ)Sσ (β, λ) = m+ r − 1 = n− 2. □

Corollary 3. i) The eigenvalues-number of (1)-(3) depends only on the elements-
number of T and the coefficients of the boundary conditions (2) and (3). On the
other hand, it does not depend on q(t) and a (neither value nor location of a on T).
ii) If detA ̸= 0, the eigenvalues-number of (1)-(3) and the elements-number of T
determine uniquely each other.

Remark 1. As is known, all eigenvalues of the classical Sturm-Liouville problem
with separated boundary conditions on time scales are real and algebraicly simple [2].
However, the Sturm-Liouville problem with the frozen argument may have non-real
or non-simple eigenvalues even if it is equipped with separated boundary conditions.

We end this section with two example problems that have non-real or non-simple
eigenvalues.

Example 1. Consider the following problem on T = {0, 1, 2, 3, 4, 5}.

L1 :


−y∆∆(t) + q1(t)y(3) = λyσ(t), t ∈ {0, 1, 2, 3}

y∆(0) = 0

y∆(4) + y(4) = 0,

where q1(t) =


0 t = 0
1 t = 1
0 t = 2
2 t = 3

. Eigenvalues of L1 are λ1 = 2 + i, λ2 = 2− i,

λ3 = 3
2 + 1

2

√
5, λ4 = 3

2 − 1
2

√
5.

Example 2. Consider the following problem on T = {0, 1, 2, 3, 4, 5}.

L2 :


−y∆∆(t) + q2(t)y(3) = λyσ(t), t ∈ {0, 1, 2, 3}

y∆(0) + 2y(0) = 0

y∆(4) + y(4) = 0,
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where q2(t) =


−1 t = 0
2 t = 1
0 t = 2
1 t = 3

. Eigenvalues of L2 are λ1 = λ2 = λ3 = 2, λ4 = 3.

4. Eigenvalues of (1)-(3) on the Time Scale T = [α, δ1] ∪ [δ2, β]

In this section, we investigate eigenvalues of the problem (1)-(3) on another
special time scale: T = [α, δ1] ∪ [δ2, β], where α < a < δ1 < δ2 < β. We assume
that a ∈ (α, δ1) . The similar results can be obtained in the case when a ∈ (δ2, β).

The following relations are valid on [α, δ1] (see [15]).

S(t, λ) =
sin

√
λ (t− a)√
λ

C(t, λ) = cos
√
λ (t− a) +

t∫
a

sin
√
λ (t− ξ)√
λ

q(ξ)dξ

The following asymptotic relations for the solutions S(t, λ) and C(t, λ) can be
proved by using a method similar to that in [35].

S(t, λ) =


sin

√
λ (t− a)√
λ

, t ∈ [α, δ1],

δ2
√
λ cos

√
λ (δ1 − a) sin

√
λ(δ2 − t) +O (exp |τ | (t− a− δ)) , t ∈ [δ2, β],

(16)

S∆(t, λ) =


cos

√
λ (t− a) , t ∈ [α, δ1),

−δ2λ cos
√
λ (δ1 − a) cos

√
λ(δ2 − t) +O

(√
λ exp |τ | (t− a− δ)

)
, t ∈ [δ2, β],

(17)

C(t, λ) =


cos

√
λ (t− a) +O

(
1√
λ
exp |τ | |t− a|

)
, t ∈ [α, δ1],

−δ2λ sin
√
λ (δ1 − a) sin

√
λ(δ2 − t) +O

(√
λ exp |τ | (t− a− δ)

)
, t ∈ [δ2, β],

(18)

C∆(t, λ) =

 −
√
λ sin

√
λ (t− a) +O (exp |τ | |t− a|) , t ∈ [α, δ1),

δ2λ3/2 sin
√
λ (δ1 − a) cos

√
λ(δ2 − t) +O (λ exp |τ | (t− a− δ)) , t ∈ [δ2, β],

(19)

where δ = δ2 − δ1, τ =Im
√
λ and O denotes Landau’s symbol.

Lemma 4. The following equlaties hold for all λ ∈ C and t ∈ T.

C∆(t, λ)S (t, λ)− C(t, λ)S∆ (t, λ) = O
(√

λ exp |τ | (β − α− δ)
)
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Proof. It is clear the function

φ (t, λ) := C∆(t, λ)S (t, λ)− C(t, λ)S∆ (t, λ)

satisfies initial value problem

φ∆ (t) = q (t)Sσ (t, λ) , t ∈ [α, δ1]

φ (a) = 1

and

φ∆ (t) = q (t)Sσ (t, λ) , t ∈ [δ2, β]

φ (δ2) = φ (δ1) + δq(δ1)S (δ2, λ) .

Hence, we get proof by using (16). □

Theorem 3. i) The problem (1)-(3) on T = [α, δ1] ∪ [δ2, β] has countable many
eigenvalues such as {λn}n≥0.

ii) The numbers {λn}n≥0 are real for sufficiently large n.

iii) If a22b12 − a12b22 ̸= 0 and β − δ2 = δ1 − α, the following asymptotic formula
holds for n → ∞. √

λn =
(n− 1)π

2 (β − δ2)
+O

(
1

n

)
(20)

Proof. The proof of (i) is obvious, since ∆(λ) is entire on λ.
By calculating directly, we get

∆(λ) = det

(
U(C) V (C)
U(S) V (S)

)
= (a22b12 − a12b22)

[
C∆(β, λ)S∆ (α, λ)− C∆(α, λ)S∆ (β, λ)

]
+

+(a22b21 − a21b22)
[
C∆(β, λ)S (β, λ)− C(β, λ)S∆ (β, λ)

]
+

+(a12b11 − a11b12)
[
C∆(α, λ)S (α, λ)− C(α, λ)S∆ (α, λ)

]
+O (λ exp |τ | (β − α− δ)) .

It follows from (16)-(19) and Lemma 4 that

∆(λ) = (a22b12 − a12b22)δ
2λ3/2 sin

√
λ(δ1 − α) cos

√
λ(β − δ2)

+O (λ exp |τ | (β − α− δ))

is valid for |λ| → ∞. Thus, we obtain the proof of (ii).
Since a22b12−a12b22 ̸= 0 and β− δ2 = δ1−α, the numbers {λn}n≥0 are roots of

λ2 sin 2
√
λ(β − δ2)√
λ

+O (λ exp 2 |τ | (β − δ2)) = 0. (21)

Now, we consider the region

Gn := {λ ∈ C : λ = ρ2, |ρ| < nπ

2 (β − δ2)
+ ε}
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where ε is sufficiently small number. There exist some positive constants Cε such

that,
∣∣∣λ2 sin 2

√
λ(β−δ2)√
λ

∣∣∣ ≥ Cε |λ|3/2 exp 2 |τ | (β − δ2) for sufficiently large λ ∈ ∂Gn.

Therefore, by applying Rouche’s theorem to (21) on Gn, we can show that (20)
holds for sufficiently large n. □

Remark 2. Since µ (α) = 0 in the considered time scale, the term a22b12 − a12b22
is not another than detA in section 3.

5. Conclusion

In this paper, we give some spectral properties of a boundary value problem
generated by the Sturm-Liouville equation with a frozen argument and with non-
separated boundary conditions on time scales. We focus on two different time
scales: a finite set and a union of two discrete closed intervals. On the finite set, we
obtain a formulation for some solutions, characteristic function and the eigenvalues-
number of the problem. On the other time scale, we give some properties and an
asymptotic formula for eigenvalues.
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