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Abstract

A subgroup H of a finite group G is said to be “semi-cover-avoiding in G”, if there exists
a chief series of G such that H covers or avoids every chief factor of the chief series. In
this article, we will consider some 2-maximal subgroups with the property of semi-cover-
avoiding of a group G and explore the structure of G.
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1. Introduction

All groups considered in this article will be finite and non-abelian. Our terminology
and notation is standard and can be found in [4]. Let G be a group and H a subgroup of
G. We use |G| to denote the order of G and 7(G) denote the set of all primes dividing
|G|. For every p € n(G), |G|, denotes the p-part of |G|. We write M < G to express that
M is a maximal subgroup of G. We use ®(G) to denote the Frattini subgroup of G. We
denote by O,(G) the product of all normal p-subgroups of G. Syl,(G) denotes the set of
all Sylow p-subgroups of G. We denote by Max(G, H) the set of all maximal subgroups
M of G such that H < M. A subgroup H is called a 2-maximal subgroup if there exists
M € Maz(G, H) such that H < M. In particular, H is strictly 2-maximal subgroup if
H < M for all M € Max(G, H). For convenience, Max(G) denotes the set of all maximal
subgroups of G and Max2(G) denotes the set of all 2-maximal subgroups of G. We use
Max%(G) to denote the set of all strictly 2-maximal subgroups of G. We use H¢ to denote
NHY.

In the past, many scholars devoted themselves to explore the relationship between some
2-maximal subgroups of a finite group G and the structure of G. And they have got many
meaningful results. One of the most classical results is due to B.Huppert. He [7] proved
that if every 2-maximal subgroup of a group G is normal in G, the G is supersoluble.
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Guo [5] has characterized the solvable groups by it’s 2-maximal subgroups with cover and
avoidance properties. Obviously, cover and avoidance properties is some kind of normality.
Inspired by this, Fan|[3] first proposed the concept of semi cover-avoidance in 2006 and
characterized the solvable groups by means of the maximal subgroups or Sylow subgroups.
He proved that a group is solvable if and only if every maximal subgroup has semi cover-
avoidance property.

At the same time, the development of the theory of formations of finite groups injected
new vitality into the research on traditional group theory. In 2018, Miao [10] defined a
class of groups Ujé:

Uf ={G| H/K < ®(G/K) or |H/K|, < p for every G chief factor H/K}

U;f?é contains not only all p-supersoluble groups but also part of non-solvable groups.

With the deepening of research, we defined U;%:

Ujf ={G| H/K < ®(G/K) or |H/K|, <p® for every G chief factor H/K}

It is noted that this class of groups is not a formation, because it only has the charac-
teristics of quotient group inheritance.

First of all, we will continue Guo’s work and characterize solvable groups by it’s some
2-maximal subgroups with semi-cover-avoiding properties. Then we will give the semi-
cover-avoiding properties to maximal subgroups of Sylow subgroups of GG, and explore the
structure of G on this basis.

Definition 1.1. Let GG be a group and H a subgroup of G. We define
T1(G) ={H| H € Max2(G), VM, € Max(G,H) s.t. Hz = (Mi)c}
T3(G) = {H| H € Max2(G), VM3 € Max(G,H) s.t. Hz < (M2)c}

2. Preliminaries

Definition 2.1. Let G be a group and H be a subgroup of GG, we call H is a 2-maximal
subgroup of there exists a maximal subgroup M of G such that H < M.

Definition 2.2. [5, Definition 2.1] Let A be a subgroup of G and H/K a chief factor of
G. We say that :

(1) A covers H/K if HA = K A;

(2) A avoids H/K if HN A=K N A;

(3) A has the cover and avoidance properties in G, in brevity, A is a C' AP-subgroup of
G, if A either covers or avoids every chief factor of G.

Definition 2.3. [6, Definition 2.2] Let H be a subgroup of a group G. H is said to be
semi-cover-avoiding in G if there is chief series 1 = Gy < G1 < --- < Gy = G of G such
that for every j =1,2,...,t, either H covers G;/G;_1 or H avoids G;/G;_1.

Lemma 2.4. [6, Lemma 2.6] Let N be a normal subgroup of a group G and H a semi-
cover-avoiding subgroup of G. Then HN/N is a semi-cover-avoiding subgroup of G/N if
one of the following conditions holds:

(1)N < H;

(2)gcd(|H|,|N|) = 1, where ged(—, —) denotes the greatest common divisor.

Lemma 2.5. [6, Theorem 3.6] If there is a 2-mazimal subgroup L of G such that L is a
solvable semi-cover-avoiding subgroup of G, then G is solvable.

Lemma 2.6. [9, Theorem 2.4] Let G be a group and H be a second mazimal subgroup of
G. If H =1, then G is solvable.

Lemma 2.7. [11, Lemma 2.13] Let H be a second mazximal subgroup of a group G and
X € Max(G, H). Assume that N is a normal subgroup of G such that N < X. If N < H,
then X = HN.
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Lemma 2.8. [4, lemma 2.3,4] A subgroup H of a group G is a minimal supplement of N
in G if and only if HN = G and HN N < ®(H).

Lemma 2.9. [1, Theorem 2| Let G be a finite group G such that, for all primes p, Ng(P)
is nilpotent where P is a Sylow p-subgroup of G. Then G is nilpotent.

Lemma 2.10. [2, lemma 9.11] Let K be a nilpotent normal subgroup of G and N a normal
subgroup of G. If N < K and K/N < ®(G/N), then K < ®(G)N.

Lemma 2.11. [8, Lemma 2.1] If G # 1 is a group of nonprime order, then Max3(G) # 0.

3. Main results

Theorem 3.1. Let G be a group. If H is semi-cover-avoiding in G for every strictly
2-maximal subgroup H of G, then G is solvable.

Proof. We assume that the result is not true and let G be a counterexample with minimal
order. We will complete the proof in the following steps.

In this case, G is not a simple group. In fact, if G were simple, then G/1 would be
the only chief factor of G. By Lemma 2.11, we know that Max3(G) # (). Hence we can
pick a 2-maximal subgroup Hy € Maz3(G). By hypothesis, we have either HyG = Hy
or HyN G = 1. Obviously, the former case is impossible. On the other hand, the latter
case implies Hy = 1. By Lemma 2.6, we get that G is solvable, a contradiction. Let L
be a minimal normal subgroup of G, we consider the quotient group G/L. By Lemma
2.11, Maz3(G/L) # 0. Tt is easy to see that Hy € Max3(G) for any 2-maximal subgroup
Hi/L € Max3(G/L). Therefore, by hypothesis, H; is a semi-cover-avoiding subgroup of
G. Noticing that L < Hj, by Lemma 2.4, we can see that H;j/L is semi-cover-avoiding in
G/L. By induction, we have that G/L is solvable. Since the class of solvable groups is a
saturated formation, we get that L is a unique minimal normal subgroup of G.

Since L is a unique minimal normal subgroup of G and therefore L is contained in
every chief series of G. Thus, for any 2-maximal subgroup K € Max3(G), we have either
KNL=1or KL =K . Weget that K = KL/L < G/L is solvable from the former case.
Noticing that K is semi-cover-avoiding in G, by Lemma 2.5, we see that G is solvable,
a contradiction. Hence, we have KL = K for any 2-maximal subgroup K € Maz3(G),
which means VK € Maz5(G), L < K.

Obviously, there exists a maximal subgroup M of G such that L £ M. Otherwise,
L < ®(G) and therefore L is solvable. Hence G is solvable, a contradiction. Let HM
be a maximal subgroup of M. We assert that H ¢ Max3(G). If not, by the above
discussion, we have L < HM < M, a contradiction. Thus, there exists a 2-maximal
subgroup HMo € Max%(G) such that HY <. - < HM0 < My < G. By the above discussion,
we have L < HMo < M,. Hence, by Lemma 2.7, My = LHM. Therefore, HMo =
HMon My = HMon LHM = L(HM n HM) = LHM = My, a contradiction. Now, our
proof is complete. O

Corollary 3.2. [6, Theorem 3.5] If every 2-maximal subgroup of a group G is a semi-
cover-avoiding subgroup of G, then G is solvable.

Theorem 3.3. Let G be a group. If T1(G) UT3(G) = 0, then G is solvable.

Proof. We assume that the theorem is not true and let G be a counterexample with the
minimal order.

We claim that G is not a simple group. If not, then for any 2-maximal subgroup Hy
of G, we have Hy € T1(G) U T3(G), which contradicts T1(G) U T3(G) = 0. Let L be a
minimal normal subgroup of G, now we consider the quotient group G/L. We assert that
T1(G/L)UT3(G/L) = 0. If not, we can easily get H; € T1(G) U T3(G) for any 2-maximal
subgroup H;/L € T1(G/L) U T3(G/L), a contradiction. By using the induction, we get
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that G//L is solvable. Since the class of solvable groups is a saturated formation, we have
that L is a unique minimal normal subgroup of G.

For any p € 7(L), by using the Frattini argument, we get G = LNg(L,) with L, €
Syly(L). If N¢(Lp) = G, then L, < G. Noticing that L, < L, by the minimality of normal
subgroup L, we see that L, = L. Thus, L is a p-group and therefore L is solvable. Further,
G is solvable, a contradiction. Hence, Ng(L,) < G and thus there exists a maximal
subgroup M of G such that Ng(L,) < M. It follows from G = LNg(Lp) < LM < G that
G = LM. Obviously, Mg = 1. Otherwise, by the uniqueness of minimal normal subgroup
L, we have L < Mg < M, which contradicts G = LM.

Since Mg = 1, for any maximal subgroup H of M, thus Hs = 1. It follows from
T1(G) U T53(G) = 0 that there exists a maximal subgroup M; € Max(G, H) such that
(Mi)eg > 1. Again by the uniqueness of L, we have that L < (Mj)g < M;. It’s easy
to prove that L <« H. Then by Lemma 2.7, My = LH < G, which implies that M
is a minimal supplement of L in G. Thus, LN M < ®(M) by Lemma 2.8. Hence,
Np(Lp,) = LN Ng(Ly,) < LN M < ®(M) is nilpotent. By the arbitrariness of p and
Lemma 2.9, L is nilpotent. Hence, L is solvable. Further, G is solvable, a contradiction.
Now, the proof is complete. ]

Corollary 3.4. Let G be a group. If G is not solvable, then T1(G) U T3(G) # 0.

Theorem 3.5. Let G be a group. If H is semi-cover-avoiding in G for every 2-mazximal
subgroup H € Th(G) UT3(G), then G is solvable.

Proof. We assume that the theorem is not true and let G be a counterexample with the
minimal order. If 71 (G) U T3(G) = (), by Theorem 3.3, G is solvable. Now we suppose
that T1(G) U T5(G) # (). We will complete the proof in the following steps.

By using the arguments similar to the proof of Theorem 3.1, we can deduce that G is not
a simple group. Let L be a minimal normal subgroup of GG, we consider the quotient group
G/L. It T1(G/L) UT3(G/L) = 0, then by Theorem 3.3, G/L is solvable. We assume that
T1(G/L)UT3(G/L) # 0. Tt’s easy to prove that Hy € T1(G) U T5(G) for any 2-maximal
subgroup Hy/L € T1(G/L) UT5(G/L). By hypotheses, we know that H; is a semi-cover-
avoiding subgroup of G. By Lemma 2.4, H; /L is semi-cover-avoiding in G/L. We get G/L
is solvable by using induction. Since the class of solvable groups is a saturated formation,
we have that L is a unique minimal normal subgroup of G. Using the arguments similar
to the proof of Theorem 3.1, for any 2-maximal subgroup K € T7(G) U T3(G), we have
L<K.

For any p € 7(L), by using the Frattini argument, we get G = LNg(L,) with L, €
Syly(L). Using the similar arguments as Theorem 3.3, we have that Ng(L,) < G and
therefore there exists a maximal M subgroup of G such that Ng(L,) < M. Now we have
G = LM and Mg = 1. Hence, for any maximal subgroup H of M, Hz = 1. We claim that
H ¢ T1(G) UT3(G). If not, by the discussion as above, we have L < H, which contradicts
Hg = 1. Then, there exists a maximal subgroup M; € Max(G, H) such that (M;)g > 1.
Hence, by the uniqueness of minimal normal subgroup L, we have L < (Mp)g < M.
Obviously, L £ H. Otherwise, L < Hg = 1, a contradiction. By Lemma 2.7, we have
M, = LH < (G, which means that M is a minimal supplement of L in G. By Lemma 2.8,
we have L N M < ®(M) is nilpotent. Noticing that N1(L,) = LN Ng(Lp) < LN M, we
can see that N, (Lp) is nilpotent. By the arbitrariness of p and Lemma 2.9, we have that
L is solvable. So G is solvable, a contradiction. Thus, our proof is complete. O

Theorem 3.6. Let G be a group. If Maz(G) N (Th(G) UT5(G)) =0, then G is solvable.

Proof. We suppose that the theorem is false and let G be a counterexample with the
minimal order. We will complete the proof in the following steps.

First we assume G is a simple group. By Lemma 2.11, Max3(G) # () and therefore we
can pick a 2-maximal subgroup Hy € Maz3(G). It is clear that (Hop)g = (Mo)g = 1 for
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any maximal subgroup My € Max(G, Hp). Thus, Hy € T1(G) U T5(G). Hence, we have
Hy € Mazxs(G) N (T1(G) U T5(G)), which contradicts Mazxs(G) N (T1(G) U T5(G)) = 0.
Therefore, the assumption is not tenable. Let L be a minimal normal subgroup of G, we
consider the quotient group G/L. We asset that Maz5(G/L)N(T1(G/L)UT5(G/L)) =

If not, we can choose a 2-maximal subgroup Hy/L € Max3(G/L)N(T1(G/L)UT3(G/L)).
We can easily prove that Hy € Maz3(G)N (11(G)UT3(G)), which contradicts Maz3(G)N
(T1(G) UT3(G)) = 0. By induction, G/L is solvable. Since the class of solvable groups is
a saturated formation, we get that L is a unique minimal normal subgroup of G.

For any p € w(L), by the Frattini argument, we have G = LN¢(L,) with L, € Syl,(L).
By using the arguments similar to the proof of Theorem 3.3, we get N¢(Lp) < G. Thus
there exist a maximal subgroup M of G such that Ng(L,) < M. Hence we have G = LM
and Mg = 1. Next we will show that M is a minimal supplement of L in G. It is clear
that Hg = 1 for every maximal subgroup H of M and therefore L « H. Now we consider
the following cases separately.

(a) H € Max5(G): Tt follows from Maz(G) N (T1(G) UT5(G)) = 0 that H ¢ Ty (G) U
T3(G). Thus, there exists a maximal subgroup M; € Maxz(G, H) such that (M;)g > 1.
By the uniqueness of minimal normal subgroup L, we have L < (M;)g < M;. By Lemma
2.7, we get that LH = M; < G.

(b) H ¢ Maxi(G): Then there exists a 2-maximal subgroup H™2 € Max3(G) such
that H < --- < HM2 < My < G. Obviously, H? ¢ Ty(G) U T3(G). If (HM?)g = 1, then
there exists a maximal subgroup M3 € Max(G, HM?) such that (M3)¢ > 1. By the
uniqueness L, we have L < (M3)g < M3. Noticing that H < H™2 < M3, by Lemma 2.7,
we see that LH = M3z < G; If (HM2)g > 1, by the uniqueness of L again, then we have
L < (HM2)g < M. By Lemma 2.7 again, we get that LH = My < G.

Now we have proved that M is a minimal supplement of L in G. Hence, by Lemma 2.8,
we get LN M < ®(M) is nilpotent. Noticing that N (L,) = LN Ng(L,) < LN M, we
can immediately see that Np,(L,) is nilpotent. By the arbitrariness of p and Lemma 2.9,
we have that L is nilpotent. Further, L is solvable. Since G/L is solvable, we have that G
is solvable, a contradiction. Now the proof is complete. O

Corollary 3.7. Let G be a group. If G is not solvable, then Max3(G)N(T1(G)UT3(QG)) #
0.

Theorem 3.8. Let G be a group. If H is semi-cover-avoiding in G for every 2-maximal
subgroup H € Maxz3(G) N (1T1(G) UT3(G)), then G is solvable.

Proof. We suppose that the theorem is not true and let G be a counterexample with the
minimal order. If Maz5(G) N (T1(G) UT3(G)) = 0, by Theorem 3.6, G is solvable. Now
we may assume that Max3(G) N (Th(G) UT3(G)) # 0. We will complete the proof in the
following steps.

By using the arguments similar to the Theorem 3.1, we can deduce that G is not a simple
group. Let L be a minimal normal subgroup of G, we consider the quotient group G/L. If
Maxs(G/L)N(T1(G/L)UT3(G/L)) = 0, by Theorem 3.6, G/L is solvable. If Max3(G/L)N
(T1(G/L)UT5(G/L)) # 0, for every 2-maximal subgroup Hi/L € Maxz(G/L)N(T1(G/L)U
T3(G/L)), we know that H; € Max3(G) N (11(G) UT3(G)). By hypothesis, H; is semi-
cover-avoiding in G. Hence, by Lemma 2.4, H; /L is semi-cover-avoiding in G/L. By using
the induction, we get that G /L is solvable. Since the class of solvable groups is a saturated
formation, we have that L is a unique minimal normal subgroup of G. Using the arguments
similar to the Theorem 3.1, for any 2-maximal subgroup K € Max3(G)N (T (G)UT3(G)),
we can get L < K

For any p € w(L), by the Frattini argument, we have G = LN¢(L,) with L, € Syl,(L).
By using the arguments similar to the proof of Theorem 3.3, we get Ng(L,) < G. Thus,
there exist a maximal subgroup M of G such that Ng(L,) < M. Hence we have G = LM
and Mg = 1. Next we will show that M is a minimal supplement of L in G. It is clear
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that Hg = 1 for every maximal subgroup H of M and therefore L £ H. Now we consider
the following cases separately.

(a) H € Th(G) U T3(G): Obviously, H ¢ Max3(G). Otherwise, by the discussion
as above, L. < H, which contradicts Hz = 1. So there exists a 2-maximal subgroup
HM € Max3(G) such that H < --- < HM < M; < G. Noticing that H € T1(G) U T3(G),
we can see that (Mj)g = 1. Since HM < My, thus (HM)g = 1. We claim that
HM: ¢ T1(G) U T3(G). If not, we have HM < Max5(G) N (T1(G) U T3(G)). By the
discussion as above, L < HM1 which contradicts (H)g = 1. Hence, there exists a
maximal subgroup My € Maz(G, HM!) such that (Msz)g > 1. By the uniqueness of
minimal normal subgroup L, we have L < (Ma)g < My. We also have H < HM: < M.
Now, by Lemma 2.7, My = LH < G.

(b) H ¢ T1(G) UT3(G): Since H ¢ T1(G) UT3(G) and Hg = Mg = 1, then there
exists a maximal subgroup Ms € Max(G, H) such that (Ms)g > 1. By the uniqueness
of minimal normal subgroup L, we have L < (M3)g < Ms. Noticing that H < M3, by
Lemma 2.7, we have Ms = LH < G.

Now we have shown that M is a minimal supplement of L in G. Then by Lemma 2.8,
we have that L N M < ®(M) is nilpotent. Then Np(L,) = LN Ng(L,) < LN M is
nilpotent. By the arbitrariness of p and Lemma 2.9, we have that L is nilpotent. Further,
L is solvable. Noticing that G/L is solvable, we see that G is solvable, a contradiction.
Thereby, our proof is complete. O

Theorem 3.9. Let G be a group. If every maximal subgroup of each Sylow p-subgroup of
G is semi-cover-avoiding in G, then G € U#.

Proof. We suppose that the theorem is not true and let G be a counterexample with the
minimal order. We will complete our proof in the following steps.

We claim that G is not a simple group. If not, then G/1 would be the only chief factor
of G. Let Py be a maximal subgroup of S,SO), where S,(JO) is a Sylow p-subgroup of G.
Then by hypothesis, we have either PyG = Py or Py G = 1. The former case is clearly
impossible. On the other hand, the latter case means Py = 1. Obviously, |SI(,O)] = p. Thus,
|G|, = p. Further, G € Uj&, a contradiction.

Let SZ(,I) be a Sylow p-subgroup of G and P; a maximal subgroup of SZ()U. By hypothesis,
we can choose a minimal normal subgroup N; of G such that either Py N; = P; or PLNN; =
1. Next we will consider the two cases separately.

(1) PPNy = Py.

By using the Lemma 2.4 (1) and induction, we can deduce that G/N; € Uf . Obviously,
Ny £ ®(G). Otherwise, G € U;’E , a contradiction. Hence, there exists a maximal subgroup
M, of G such that G = N1M; and Ny N M; = 1. Noticing that |G|, = |N1||Mi]p, we
can see that 1 < |M;|, < |G|,. Let (Mp), be a Sylow p-subgroup of M;. Now we
can pick a Sylow p-subgroup 5’1(32) of G and a maximal subgroup P, of S,(f) that satisfies
(M), < P < S}(;Q). By hypothesis, there exists a minimal normal subgroup N, of G such
that either P,Ny = P or P, N Ny = 1. Next we will consider the two cases separately.

(a) PoNg = P5: Obviously, Ny < P». By using the Lemma 2.4 (1) and induction, we
also have G/Ny € Uf . We assert that Ny = Ns. If not, by the minimality of normal
subgroup Nj, we have N; N Ny = 1. It’s easy to prove that N; No/Nj is a minimal normal
subgroup of G/N;. Since G/N; € Uf, thus [N1Na/Ni|, < p or NiNo/Ny < &(G/Ny).
Because Ny = N1 Ny/Ny, so we can infer |Na|, < p from the former case. Hence, G € U#,
a contradiction. By Lemma 2.10, we get N1 Ny < ®(G)N; from the latter case. Meanwhile,
NiNy < Oy(G). Therefore N1Ny < ®(G)N1 N O,(G) = (P(G) N Oy(G))N1. We claim
that ®(G) N Op(G) = 1. If not, we can pick a minimal normal subgroup N3 of G that
holds N3 < ®(G) N O,(G). Since N3 < Op(G), by using the Lemma 2.4 (1) and induction,
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we have G/N3 € U#. It follows from N3 < ®(G) that G € Uf, a contradiction. Thus,
NNy < (®(G) N Op(G))N1 = Ny, which is impossible. Since |G|, = |N1||Mi]p, then we
have Ni(My), is a Sylow p-subgroup of G. Noticing that N = N, we see that Na(M7),
is a Sylow p-subgroup of G, which contradicts No(My), < Ps.

(b) P, N Ny = 1: Since PNy < S](;2)N2, then |P2N2|||SZ(;2)N2]. It’s easy to prove
]51(72) N Na||p , which implies |Na|, < p. If [Na|, = 1, by Lemma 2.4 (2) and induction, we
have G/Ny € U}fﬁ . Therefore, G € Uf , a contradiction. Now we consider |Na|, = p. Since
P, NNy =1, so (M), N Ny = 1. Hence, we have Ny £ M;. Further, G = NoM;. Let
(N2 N Mjy), be a Sylow p-subgroup of No N Mj. There exists an element = € M; such that
z(No N M)zt < (My), < P. Since x(No N M)zt < No, thus z(No N M)zt <
P, N Ny = 1. Hence, |[No N M|, = 1. It follows from |G|, = % = |N1|| M|, that
|N1| = |Na|, = p. Therefore, G € U¥, a contradiction.

(2) PiNNy=1.

Using the same method described in (b), we can deduce that |Ni|, < p. If |[N{|, = 1,
by Lemma 2.4 (2) and induction, we have G/N; € U#. Thus, G € Uj&, a contradiction.
Now we may assume that |N1|, = p and |G|, > p. Let (1), be a Sylow p-subgroup of Nj.
Thus, there exists a Sylow p-subgroup S](g?’) of G and a maximal subgroup Ps of SI(,3) such
that (N1), < P3 < Sz(f’). By hypothesis, we can pick a minimal normal subgroup N3 of G
that satisfies either P3sN3 = P3 or P3N N3 = 1. The former case is clearly impossible by
case (1). We can deduce that |[N3|, = p from the latter case. If N3 < ®(G), then |N3| = p.
By the induction, we have G/N3 € Uf. Hence, G € U#, a contradiction. Now we have
N3 £ ®(G). Then there exists a maximal subgroup Mj of G such that G = N3Mj.

We set that (Mé)p is a Sylow p-subgroup of Mé Noticing that |N3|, = p, we can
immediately get that (Mé)p is a Sylow p-subgroup of G or (Mé)p is a maximal subgroup of
SI(,4), where SI(;4) € Syl,(G). If (Mj),, is a Sylow p-subgroup of G, then we get M, € U]f by
using the induction. It is easy to prove that G /N3 = M:; /M:;ﬂNg € U]fE , and therefore G €
UI?E, a contradiction. If (Mj3), is a maximal subgroup of 51(34), by hypothesis, (Mj),, is semi-
cover-avoiding in G. Hence, there exists a chiefseries 1 = Gg < G1 < -+ < Gi_1 <G =G
such that either (My),Gi = (My),Gi_1 or (My),NG; = (My),NGi_1 for every i =1,2---t.
It’s clear that 1 = GOOM:; <Gy ﬂMé <. < Gt,lﬂMé < GtﬂMé = Mé is a normal series
of My. If (M3),Gi = (Ms),Gi_1, then we have that (M3),(G; N My) = (My),(Gi—1 N M),
which means G; N Mé/Gi_l N Mé is a p-group. If (Mé)p NG, = (Mé)p N G;_1, then
(M3), N (GN My) = (My), N (Gi—1 N M), which implies G; N\ M3 /G;_1 N Mg is a p -group.
In summary, we have Mé is p-solvable. Thus, G/N3 = Mé /Mé M N3 is p-solvable. Hence,
G is p-solvable and therefore |N3| = p. By induction, G/N3 € U#, thus G € Uf, a
contradiction. Now our proof is complete. ([l
Theorem 3.10. Let G be a group. If every 2-mazimal subgroup of each Sylow p-subgroup
of G is semi-cover-avoiding in G, then G € Uj;.

Proof. We suppose that the theorem is not true and let G be a counterexample with the
minimal order. We will complete our proof in the following steps.

We assert that G is not a simple group. If not, then G/1 would be the only chief factor
of G. Let S, be a Sylow p-subgroup of G and P a 2-maximal subgroup of S,. Then by
hypothesis, we have either PG = P or PNG = 1. Obviously, the former case is impossible.
The latter case means P = 1. Thus, |G|, = p. Therefore, G € U;%, a contradiction.

Let Sz(,a) be a Sylow p-subgroup of G and P;; a 2-maximal subgroup of SI(,a) . By
hypothesis, we can pick a minimal normal subgroup N1 of G such that either Pj1 N1 = Pyq
or P11 N Ni1 = 1. Next we will consider the two cases separately.
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(1) PN = P

It’s clear to see that Ni; < Pj;. By using the Lemma 2.4(1) and induction, we have
G/Ny € U;%. Obviously, Ni; £ ®(G). Otherwise, G € Uj;, a contradiction. Hence we
can choose a maximal subgroup M;i; of G that holds G = N1 M7; and Nip N My, = 1.
Noticing that |G|, = |N11||Mi1]p, we can see that 1 < [My1], < |G|p. Let (Mi1), be a
Sylow p-subgroup of Mi1. Thus there exists a Sylow p-subgroup SI(,b) of G and a maximal
subgroup P; of S,(,b) such that (My1), < Pi. If (My1), = P1, we can immediately get
|N11| = p from |G|, = |N11||Mi1]p. Thus, G € Uj;, a contradiction. Hence, (M11), < P
and therefore there exist a maximal subgroup Pis of Py such that (Mi1), < Pia. Then,
by hypothesis, we can pick a minimal normal subgroup Nis of G that satisfies either

P1asN1s = Pis or P1o N Nijg = 1. Next we will consider the two cases separately.
(a) P12N12 = P122 ObViOllSly, N12 S P12. By Lemma 2.4 (1) the iIldUCtiOIl, we have

G/Nig € Ujé. We claim that Nij; = Njg. If not, by the minimality of Ny1, we have
Ni1 N Nig = 1. It’s easy to prove N1 Ni2/Njp is a minimal normal subgroup of G/Ny;.
It follows from G/N11 € U;é that |N11N12/N11’p < p2 or N11N12/N11 < @(G/NH) Since
Nia = Ni1Nig/Ni1, then we get |Nia|, < p? from the former case. Therefore, G € Uj;,

a contradiction. By Lemma 2.10, we can deduce that Nj;Nio < ®(G)Np; from the latter
case. Meanwhile, N1;Ni2 < Op(G). Therefore we have Ni1Nia < ®(G)N11 N O,(G) =
(®(G)NOp(G))N11. We claim that ®(G)NO,(G) = 1. If not, there exists a minimal normal

subgroup N of G such that N < ®(G) N O,(G). Since N < O,(G), therefore G/N € Uj;

by induction. Noticing that N < ®(G), we see that G € UZQL, a contradiction. Now we
have Ni1Ni2 < Ny, which is impossible. Because Ny1(Mi1), is a Sylow p-subgroup of G
and Ni; = Nj9, S0 N12(M11)p S Sylp(G), which contradicts N12(M11)p < Ps < Sz(,b)

(b) Pi2N N2 = 1: Using the same method described in Theorem 3.9(b), we get | N12|, <
p?. Since Pis N Nio = 1, thus (Mi1)p N N1z = 1, which implies that Nio £ Mjq. Hence
we have G = NjogMp;. Using the argument similar to the Theorem 3.9(b), we have

|Ni2 N M|, = 1. Noticing that |G|, = %

|N11] = [Ni2|p < p?. Hence, G € U;%, a contradiction.

(2) PiiN Ny =1.

It’s easy to know that |Nyi|, < p?. Let’s first discuss the quantitative relationship
between |N11|, and |G|,. If [N11|, = |G|p, then |G|, < p?. Hence G € U:;, a contradiction;

If p|N11l|p = |G|p, then we know that |G/Nii|, = p. Hence, G/Ny; € Uj;, and therefore
G € Uj;, a contradiction; Next we consider p|Ni1|, < |G|p. Let (Ni1), be a Sylow p-

= |Nn||Mi1|p, we can see that

subgroup of Ni;. Obviously, there exists a Sylow p-subgroup S,(f) of G and a 2-maximal

subgroup Pi3 of S,(,C) such that (Ni1), < Pi3. Then, by hypothesis, we can choose a
minimal normal subgroup Ni3 of GG such that P;3Ni3 = Pi3 or P3N N3 = 1. The former
case is impossible by case (1). Next we focus on the latter case. We also have |Ny3|, < p?.

If N13 < ®(G), then |N13| < p?. By using the induction, we have G/Ny3 € Uj;. Hence,
G e U;f;, a contradiction. Therefore, N13 £ ®(G). There exists a maximal subgroup My,
of G such that G = Ny3M;.

We set (Mi;), is a Sylow p-subgroup of M;; and |G|, = p", where n € N. Since
|N13l, < p* and the relation between the order of maximal subgroup and 2-maximal
subgroup of p-group, then we have |(M{3)p| =p",p" L or p" 2. If |(M13)p| = p", then
(Mi3)p is a Sylow p-subgroup of G. By using the induction, we have Mi3 € U;%. Since
G/Ni3 = M3/M;3 N Ni3, then G/Ny3 € U;%. Therefore G € U;%, a contradiction. If
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|(Mi3),| = p"~ !, then (M), is a maximal subgroup of S,gd) where S,gd) € Syly,(G). It’s
casy to prove that M, € U;fé by Theorem 3.9. Because G/Ni3 = M;3/M,; N N3, thus

we have G/Nig € U} C Uj;. Hence G € U;’%, a contradiction. If |(M3),| = p"~2, then

(M£3)p is a 2-maximal subgroup of Sz(f) where Sée) € Syl,(G). Then by hypothesis, we

know that (M£3)p is a semi-cover-avoiding subgroup of G. Similarly to Theorem 3.9(2),
we have that My, is p-solvable. Thus, G/Ni3 = M,5/M;5 N N3 is p-solvable. Hence, G is
p-solvable and therefore |N13| < p?. By using the induction, we have G//Ni3 € Uj;. Thus,

G e Uj;, a contradiction. Now our proof is complete. O
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