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Abstract
A subgroup H of a finite group G is said to be “semi-cover-avoiding in G”, if there exists
a chief series of G such that H covers or avoids every chief factor of the chief series. In
this article, we will consider some 2-maximal subgroups with the property of semi-cover-
avoiding of a group G and explore the structure of G.
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1. Introduction
All groups considered in this article will be finite and non-abelian. Our terminology

and notation is standard and can be found in [4]. Let G be a group and H a subgroup of
G. We use |G| to denote the order of G and π(G) denote the set of all primes dividing
|G|. For every p ∈ π(G), |G|p denotes the p-part of |G|. We write M l G to express that
M is a maximal subgroup of G. We use Φ(G) to denote the Frattini subgroup of G. We
denote by Op(G) the product of all normal p-subgroups of G. Sylp(G) denotes the set of
all Sylow p-subgroups of G. We denote by Max(G, H) the set of all maximal subgroups
M of G such that H ≤ M . A subgroup H is called a 2-maximal subgroup if there exists
M ∈ Max(G, H) such that H l M . In particular, H is strictly 2-maximal subgroup if
H lM for all M ∈ Max(G, H). For convenience, Max(G) denotes the set of all maximal
subgroups of G and Max2(G) denotes the set of all 2-maximal subgroups of G. We use
Max∗

2(G) to denote the set of all strictly 2-maximal subgroups of G. We use HG to denote
∩Hg.

In the past, many scholars devoted themselves to explore the relationship between some
2-maximal subgroups of a finite group G and the structure of G. And they have got many
meaningful results. One of the most classical results is due to B.Huppert. He [7] proved
that if every 2-maximal subgroup of a group G is normal in G, the G is supersoluble.
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Guo [5] has characterized the solvable groups by it’s 2-maximal subgroups with cover and
avoidance properties. Obviously, cover and avoidance properties is some kind of normality.
Inspired by this, Fan[3] first proposed the concept of semi cover-avoidance in 2006 and
characterized the solvable groups by means of the maximal subgroups or Sylow subgroups.
He proved that a group is solvable if and only if every maximal subgroup has semi cover-
avoidance property.

At the same time, the development of the theory of formations of finite groups injected
new vitality into the research on traditional group theory. In 2018, Miao [10] defined a
class of groups U#

p :
U#

p = {G| H/K ≤ Φ(G/K) or |H/K|p ≤ p for every G chief factor H/K}
U#

p contains not only all p-supersoluble groups but also part of non-solvable groups.
With the deepening of research, we defined U#

pi :
U#

pi = {G| H/K ≤ Φ(G/K) or |H/K|p ≤ pi for every G chief factor H/K}
It is noted that this class of groups is not a formation, because it only has the charac-

teristics of quotient group inheritance.
First of all, we will continue Guo’s work and characterize solvable groups by it’s some

2-maximal subgroups with semi-cover-avoiding properties. Then we will give the semi-
cover-avoiding properties to maximal subgroups of Sylow subgroups of G, and explore the
structure of G on this basis.

Definition 1.1. Let G be a group and H a subgroup of G. We define
T1(G) = {H| H ∈ Max2(G), ∀M1 ∈ Max(G, H) s.t. HG = (M1)G}
T3(G) = {H| H ∈ Max2(G), ∀M2 ∈ Max(G, H) s.t. HG < (M2)G}

2. Preliminaries
Definition 2.1. Let G be a group and H be a subgroup of G, we call H is a 2-maximal
subgroup of there exists a maximal subgroup M of G such that H l M .

Definition 2.2. [5, Definition 2.1] Let A be a subgroup of G and H/K a chief factor of
G. We say that :

(1) A covers H/K if HA = KA;
(2) A avoids H/K if H ∩ A = K ∩ A;
(3) A has the cover and avoidance properties in G, in brevity, A is a CAP -subgroup of

G, if A either covers or avoids every chief factor of G.

Definition 2.3. [6, Definition 2.2] Let H be a subgroup of a group G. H is said to be
semi-cover-avoiding in G if there is chief series 1 = G0 < G1 < · · · < Gt = G of G such
that for every j = 1, 2, . . . , t, either H covers Gj/Gj−1 or H avoids Gj/Gj−1.

Lemma 2.4. [6, Lemma 2.6] Let N be a normal subgroup of a group G and H a semi-
cover-avoiding subgroup of G. Then HN/N is a semi-cover-avoiding subgroup of G/N if
one of the following conditions holds:

(1)N ≤ H;
(2)gcd(|H|, |N |) = 1, where gcd(−, −) denotes the greatest common divisor.

Lemma 2.5. [6, Theorem 3.6] If there is a 2-maximal subgroup L of G such that L is a
solvable semi-cover-avoiding subgroup of G, then G is solvable.

Lemma 2.6. [9, Theorem 2.4] Let G be a group and H be a second maximal subgroup of
G. If H = 1, then G is solvable.

Lemma 2.7. [11, Lemma 2.13] Let H be a second maximal subgroup of a group G and
X ∈ Max(G, H). Assume that N is a normal subgroup of G such that N ≤ X. If N � H,
then X = HN .
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Lemma 2.8. [4, lemma 2.3,4] A subgroup H of a group G is a minimal supplement of N
in G if and only if HN = G and H ∩ N ≤ Φ(H).

Lemma 2.9. [1, Theorem 2] Let G be a finite group G such that, for all primes p, NG(P )
is nilpotent where P is a Sylow p-subgroup of G. Then G is nilpotent.

Lemma 2.10. [2, lemma 9.11] Let K be a nilpotent normal subgroup of G and N a normal
subgroup of G. If N ≤ K and K/N ≤ Φ(G/N), then K ≤ Φ(G)N .

Lemma 2.11. [8, Lemma 2.1] If G 6= 1 is a group of nonprime order, then Max∗
2(G) 6= ∅.

3. Main results
Theorem 3.1. Let G be a group. If H is semi-cover-avoiding in G for every strictly
2-maximal subgroup H of G, then G is solvable.

Proof. We assume that the result is not true and let G be a counterexample with minimal
order. We will complete the proof in the following steps.

In this case, G is not a simple group. In fact, if G were simple, then G/1 would be
the only chief factor of G. By Lemma 2.11, we know that Max∗

2(G) 6= ∅. Hence we can
pick a 2-maximal subgroup H0 ∈ Max∗

2(G). By hypothesis, we have either H0G = H0
or H0 ∩ G = 1. Obviously, the former case is impossible. On the other hand, the latter
case implies H0 = 1. By Lemma 2.6, we get that G is solvable, a contradiction. Let L
be a minimal normal subgroup of G, we consider the quotient group G/L. By Lemma
2.11, Max∗

2(G/L) 6= ∅. It is easy to see that H1 ∈ Max∗
2(G) for any 2-maximal subgroup

H1/L ∈ Max∗
2(G/L). Therefore, by hypothesis, H1 is a semi-cover-avoiding subgroup of

G. Noticing that L ≤ H1, by Lemma 2.4, we can see that H1/L is semi-cover-avoiding in
G/L. By induction, we have that G/L is solvable. Since the class of solvable groups is a
saturated formation, we get that L is a unique minimal normal subgroup of G.

Since L is a unique minimal normal subgroup of G and therefore L is contained in
every chief series of G. Thus, for any 2-maximal subgroup K ∈ Max∗

2(G), we have either
K ∩ L = 1 or KL = K . We get that K ∼= KL/L ≤ G/L is solvable from the former case.
Noticing that K is semi-cover-avoiding in G, by Lemma 2.5, we see that G is solvable,
a contradiction. Hence, we have KL = K for any 2-maximal subgroup K ∈ Max∗

2(G),
which means ∀K ∈ Max∗

2(G), L ≤ K.
Obviously, there exists a maximal subgroup M of G such that L � M . Otherwise,

L ≤ Φ(G) and therefore L is solvable. Hence G is solvable, a contradiction. Let HM

be a maximal subgroup of M . We assert that HM /∈ Max∗
2(G). If not, by the above

discussion, we have L ≤ HM ≤ M , a contradiction. Thus, there exists a 2-maximal
subgroup HM0 ∈ Max∗

2(G) such that HM l · · ·lHM0 lM0lG. By the above discussion,
we have L ≤ HM0 ≤ M0. Hence, by Lemma 2.7, M0 = LHM . Therefore, HM0 =
HM0 ∩ M0 = HM0 ∩ LHM = L(HM0 ∩ HM ) = LHM = M0, a contradiction. Now, our
proof is complete. �

Corollary 3.2. [6, Theorem 3.5] If every 2-maximal subgroup of a group G is a semi-
cover-avoiding subgroup of G, then G is solvable.

Theorem 3.3. Let G be a group. If T1(G) ∪ T3(G) = ∅, then G is solvable.

Proof. We assume that the theorem is not true and let G be a counterexample with the
minimal order.

We claim that G is not a simple group. If not, then for any 2-maximal subgroup H0
of G, we have H0 ∈ T1(G) ∪ T3(G), which contradicts T1(G) ∪ T3(G) = ∅. Let L be a
minimal normal subgroup of G, now we consider the quotient group G/L. We assert that
T1(G/L) ∪ T3(G/L) = ∅. If not, we can easily get H1 ∈ T1(G) ∪ T3(G) for any 2-maximal
subgroup H1/L ∈ T1(G/L) ∪ T3(G/L), a contradiction. By using the induction, we get
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that G/L is solvable. Since the class of solvable groups is a saturated formation, we have
that L is a unique minimal normal subgroup of G.

For any p ∈ π(L), by using the Frattini argument, we get G = LNG(Lp) with Lp ∈
Sylp(L). If NG(Lp) = G, then Lp E G. Noticing that Lp ≤ L, by the minimality of normal
subgroup L, we see that Lp = L. Thus, L is a p-group and therefore L is solvable. Further,
G is solvable, a contradiction. Hence, NG(Lp) < G and thus there exists a maximal
subgroup M of G such that NG(Lp) ≤ M . It follows from G = LNG(Lp) ≤ LM ≤ G that
G = LM . Obviously, MG = 1. Otherwise, by the uniqueness of minimal normal subgroup
L, we have L ≤ MG ≤ M , which contradicts G = LM .

Since MG = 1, for any maximal subgroup H of M , thus HG = 1. It follows from
T1(G) ∪ T3(G) = ∅ that there exists a maximal subgroup M1 ∈ Max(G, H) such that
(M1)G > 1. Again by the uniqueness of L, we have that L ≤ (M1)G ≤ M1. It’s easy
to prove that L � H. Then by Lemma 2.7, M1 = LH < G, which implies that M
is a minimal supplement of L in G. Thus, L ∩ M ≤ Φ(M) by Lemma 2.8. Hence,
NL(Lp) = L ∩ NG(Lp) ≤ L ∩ M ≤ Φ(M) is nilpotent. By the arbitrariness of p and
Lemma 2.9, L is nilpotent. Hence, L is solvable. Further, G is solvable, a contradiction.
Now, the proof is complete. �

Corollary 3.4. Let G be a group. If G is not solvable, then T1(G) ∪ T3(G) 6= ∅.
Theorem 3.5. Let G be a group. If H is semi-cover-avoiding in G for every 2-maximal
subgroup H ∈ T1(G) ∪ T3(G), then G is solvable.
Proof. We assume that the theorem is not true and let G be a counterexample with the
minimal order. If T1(G) ∪ T3(G) = ∅, by Theorem 3.3, G is solvable. Now we suppose
that T1(G) ∪ T3(G) 6= ∅. We will complete the proof in the following steps.

By using the arguments similar to the proof of Theorem 3.1, we can deduce that G is not
a simple group. Let L be a minimal normal subgroup of G, we consider the quotient group
G/L. If T1(G/L) ∪ T3(G/L) = ∅, then by Theorem 3.3, G/L is solvable. We assume that
T1(G/L) ∪ T3(G/L) 6= ∅. It’s easy to prove that H1 ∈ T1(G) ∪ T3(G) for any 2-maximal
subgroup H1/L ∈ T1(G/L) ∪ T3(G/L). By hypotheses, we know that H1 is a semi-cover-
avoiding subgroup of G. By Lemma 2.4, H1/L is semi-cover-avoiding in G/L. We get G/L
is solvable by using induction. Since the class of solvable groups is a saturated formation,
we have that L is a unique minimal normal subgroup of G. Using the arguments similar
to the proof of Theorem 3.1, for any 2-maximal subgroup K ∈ T1(G) ∪ T3(G), we have
L ≤ K.

For any p ∈ π(L), by using the Frattini argument, we get G = LNG(Lp) with Lp ∈
Sylp(L). Using the similar arguments as Theorem 3.3, we have that NG(Lp) < G and
therefore there exists a maximal M subgroup of G such that NG(Lp) ≤ M . Now we have
G = LM and MG = 1. Hence, for any maximal subgroup H of M , HG = 1. We claim that
H /∈ T1(G) ∪ T3(G). If not, by the discussion as above, we have L ≤ H, which contradicts
HG = 1. Then, there exists a maximal subgroup M1 ∈ Max(G, H) such that (M1)G > 1.
Hence, by the uniqueness of minimal normal subgroup L, we have L ≤ (M1)G ≤ M1.
Obviously, L � H. Otherwise, L ≤ HG = 1, a contradiction. By Lemma 2.7, we have
M1 = LH < G, which means that M is a minimal supplement of L in G. By Lemma 2.8,
we have L ∩ M ≤ Φ(M) is nilpotent. Noticing that NL(Lp) = L ∩ NG(Lp) ≤ L ∩ M , we
can see that NL(Lp) is nilpotent. By the arbitrariness of p and Lemma 2.9, we have that
L is solvable. So G is solvable, a contradiction. Thus, our proof is complete. �

Theorem 3.6. Let G be a group. If Max∗
2(G) ∩ (T1(G) ∪ T3(G)) = ∅, then G is solvable.

Proof. We suppose that the theorem is false and let G be a counterexample with the
minimal order. We will complete the proof in the following steps.

First we assume G is a simple group. By Lemma 2.11, Max∗
2(G) 6= ∅ and therefore we

can pick a 2-maximal subgroup H0 ∈ Max∗
2(G). It is clear that (H0)G = (M0)G = 1 for
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any maximal subgroup M0 ∈ Max(G, H0). Thus, H0 ∈ T1(G) ∪ T3(G). Hence, we have
H0 ∈ Max∗

2(G) ∩ (T1(G) ∪ T3(G)), which contradicts Max∗
2(G) ∩ (T1(G) ∪ T3(G)) = ∅.

Therefore, the assumption is not tenable. Let L be a minimal normal subgroup of G, we
consider the quotient group G/L. We asset that Max∗

2(G/L) ∩ (T1(G/L) ∪ T3(G/L)) = ∅.
If not, we can choose a 2-maximal subgroup H1/L ∈ Max∗

2(G/L) ∩ (T1(G/L) ∪ T3(G/L)).
We can easily prove that H1 ∈ Max∗

2(G) ∩ (T1(G) ∪ T3(G)), which contradicts Max∗
2(G) ∩

(T1(G) ∪ T3(G)) = ∅. By induction, G/L is solvable. Since the class of solvable groups is
a saturated formation, we get that L is a unique minimal normal subgroup of G.

For any p ∈ π(L), by the Frattini argument, we have G = LNG(Lp) with Lp ∈ Sylp(L).
By using the arguments similar to the proof of Theorem 3.3, we get NG(Lp) < G. Thus
there exist a maximal subgroup M of G such that NG(Lp) ≤ M . Hence we have G = LM
and MG = 1. Next we will show that M is a minimal supplement of L in G. It is clear
that HG = 1 for every maximal subgroup H of M and therefore L � H. Now we consider
the following cases separately.

(a) H ∈ Max∗
2(G): It follows from Max∗

2(G) ∩ (T1(G) ∪ T3(G)) = ∅ that H /∈ T1(G) ∪
T3(G). Thus, there exists a maximal subgroup M1 ∈ Max(G, H) such that (M1)G > 1.
By the uniqueness of minimal normal subgroup L, we have L ≤ (M1)G ≤ M1. By Lemma
2.7, we get that LH = M1 < G.

(b) H /∈ Max∗
2(G): Then there exists a 2-maximal subgroup HM2 ∈ Max∗

2(G) such
that H l · · · l HM2 l M2 l G. Obviously, HM2 /∈ T1(G) ∪ T3(G). If (HM2)G = 1, then
there exists a maximal subgroup M3 ∈ Max(G, HM2) such that (M3)G > 1. By the
uniqueness L, we have L ≤ (M3)G ≤ M3. Noticing that H ≤ HM2 ≤ M3, by Lemma 2.7,
we see that LH = M3 < G; If (HM2)G > 1, by the uniqueness of L again, then we have
L ≤ (HM2)G ≤ M2. By Lemma 2.7 again, we get that LH = M2 < G.

Now we have proved that M is a minimal supplement of L in G. Hence, by Lemma 2.8,
we get L ∩ M ≤ Φ(M) is nilpotent. Noticing that NL(Lp) = L ∩ NG(Lp) ≤ L ∩ M , we
can immediately see that NL(Lp) is nilpotent. By the arbitrariness of p and Lemma 2.9,
we have that L is nilpotent. Further, L is solvable. Since G/L is solvable, we have that G
is solvable, a contradiction. Now the proof is complete. �

Corollary 3.7. Let G be a group. If G is not solvable, then Max∗
2(G)∩(T1(G)∪T3(G)) 6=

∅.
Theorem 3.8. Let G be a group. If H is semi-cover-avoiding in G for every 2-maximal
subgroup H ∈ Max∗

2(G) ∩ (T1(G) ∪ T3(G)), then G is solvable.
Proof. We suppose that the theorem is not true and let G be a counterexample with the
minimal order. If Max∗

2(G) ∩ (T1(G) ∪ T3(G)) = ∅, by Theorem 3.6, G is solvable. Now
we may assume that Max∗

2(G) ∩ (T1(G) ∪ T3(G)) 6= ∅. We will complete the proof in the
following steps.

By using the arguments similar to the Theorem 3.1, we can deduce that G is not a simple
group. Let L be a minimal normal subgroup of G, we consider the quotient group G/L. If
Max∗

2(G/L)∩(T1(G/L)∪T3(G/L)) = ∅, by Theorem 3.6, G/L is solvable. If Max∗
2(G/L)∩

(T1(G/L)∪T3(G/L)) 6= ∅, for every 2-maximal subgroup H1/L ∈ Max∗
2(G/L)∩(T1(G/L)∪

T3(G/L)), we know that H1 ∈ Max∗
2(G) ∩ (T1(G) ∪ T3(G)). By hypothesis, H1 is semi-

cover-avoiding in G. Hence, by Lemma 2.4, H1/L is semi-cover-avoiding in G/L. By using
the induction, we get that G/L is solvable. Since the class of solvable groups is a saturated
formation, we have that L is a unique minimal normal subgroup of G. Using the arguments
similar to the Theorem 3.1, for any 2-maximal subgroup K ∈ Max∗

2(G)∩ (T1(G)∪T3(G)),
we can get L ≤ K

For any p ∈ π(L), by the Frattini argument, we have G = LNG(Lp) with Lp ∈ Sylp(L).
By using the arguments similar to the proof of Theorem 3.3, we get NG(Lp) < G. Thus,
there exist a maximal subgroup M of G such that NG(Lp) ≤ M . Hence we have G = LM
and MG = 1. Next we will show that M is a minimal supplement of L in G. It is clear
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that HG = 1 for every maximal subgroup H of M and therefore L � H. Now we consider
the following cases separately.

(a) H ∈ T1(G) ∪ T3(G): Obviously, H /∈ Max∗
2(G). Otherwise, by the discussion

as above, L ≤ H, which contradicts HG = 1. So there exists a 2-maximal subgroup
HM1 ∈ Max∗

2(G) such that H l · · · l HM1 l M1 l G. Noticing that H ∈ T1(G) ∪ T3(G),
we can see that (M1)G = 1. Since HM1 ≤ M1, thus (HM1)G = 1. We claim that
HM1 /∈ T1(G) ∪ T3(G). If not, we have HM1 ≤ Max∗

2(G) ∩ (T1(G) ∪ T3(G)). By the
discussion as above, L ≤ HM1 , which contradicts (HM1)G = 1. Hence, there exists a
maximal subgroup M2 ∈ Max(G, HM1) such that (M2)G > 1. By the uniqueness of
minimal normal subgroup L, we have L ≤ (M2)G ≤ M2. We also have H ≤ HM1 ≤ M2.
Now, by Lemma 2.7, M2 = LH < G.

(b) H /∈ T1(G) ∪ T3(G): Since H /∈ T1(G) ∪ T3(G) and HG = MG = 1, then there
exists a maximal subgroup M3 ∈ Max(G, H) such that (M3)G > 1. By the uniqueness
of minimal normal subgroup L, we have L ≤ (M3)G ≤ M3. Noticing that H ≤ M3, by
Lemma 2.7, we have M3 = LH < G.

Now we have shown that M is a minimal supplement of L in G. Then by Lemma 2.8,
we have that L ∩ M ≤ Φ(M) is nilpotent. Then NL(Lp) = L ∩ NG(Lp) ≤ L ∩ M is
nilpotent. By the arbitrariness of p and Lemma 2.9, we have that L is nilpotent. Further,
L is solvable. Noticing that G/L is solvable, we see that G is solvable, a contradiction.
Thereby, our proof is complete. �

Theorem 3.9. Let G be a group. If every maximal subgroup of each Sylow p-subgroup of
G is semi-cover-avoiding in G, then G ∈ U#

p .

Proof. We suppose that the theorem is not true and let G be a counterexample with the
minimal order. We will complete our proof in the following steps.

We claim that G is not a simple group. If not, then G/1 would be the only chief factor
of G. Let P0 be a maximal subgroup of S

(0)
p , where S

(0)
p is a Sylow p-subgroup of G.

Then by hypothesis, we have either P0G = P0 or P0 ∩ G = 1. The former case is clearly
impossible. On the other hand, the latter case means P0 = 1. Obviously, |S(0)

p | = p. Thus,
|G|p = p. Further, G ∈ U#

p , a contradiction.
Let S

(1)
p be a Sylow p-subgroup of G and P1 a maximal subgroup of S

(1)
p . By hypothesis,

we can choose a minimal normal subgroup N1 of G such that either P1N1 = P1 or P1∩N1 =
1. Next we will consider the two cases separately.

(1) P1N1 = P1.
By using the Lemma 2.4 (1) and induction, we can deduce that G/N1 ∈ U#

p . Obviously,
N1 � Φ(G). Otherwise, G ∈ U#

p , a contradiction. Hence, there exists a maximal subgroup
M1 of G such that G = N1M1 and N1 ∩ M1 = 1. Noticing that |G|p = |N1||M1|p, we
can see that 1 < |M1|p < |G|p. Let (M1)p be a Sylow p-subgroup of M1. Now we
can pick a Sylow p-subgroup S

(2)
p of G and a maximal subgroup P2 of S

(2)
p that satisfies

(M1)p ≤ P2 l S
(2)
p . By hypothesis, there exists a minimal normal subgroup N2 of G such

that either P2N2 = P2 or P2 ∩ N2 = 1. Next we will consider the two cases separately.
(a) P2N2 = P2: Obviously, N2 ≤ P2. By using the Lemma 2.4 (1) and induction, we

also have G/N2 ∈ U#
p . We assert that N1 = N2. If not, by the minimality of normal

subgroup N1, we have N1 ∩ N2 = 1. It’s easy to prove that N1N2/N1 is a minimal normal
subgroup of G/N1. Since G/N1 ∈ U#

p , thus |N1N2/N1|p ≤ p or N1N2/N1 ≤ Φ(G/N1).
Because N2 ∼= N1N2/N1, so we can infer |N2|p ≤ p from the former case. Hence, G ∈ U#

p ,
a contradiction. By Lemma 2.10, we get N1N2 ≤ Φ(G)N1 from the latter case. Meanwhile,
N1N2 ≤ Op(G). Therefore N1N2 ≤ Φ(G)N1 ∩ Op(G) = (Φ(G) ∩ Op(G))N1. We claim
that Φ(G) ∩ Op(G) = 1. If not, we can pick a minimal normal subgroup N3 of G that
holds N3 ≤ Φ(G) ∩ Op(G). Since N3 ≤ Op(G), by using the Lemma 2.4 (1) and induction,
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we have G/N3 ∈ U#
p . It follows from N3 ≤ Φ(G) that G ∈ U#

p , a contradiction. Thus,
N1N2 ≤ (Φ(G) ∩ Op(G))N1 = N1, which is impossible. Since |G|p = |N1||M1|p, then we
have N1(M1)p is a Sylow p-subgroup of G. Noticing that N1 = N2, we see that N2(M1)p

is a Sylow p-subgroup of G, which contradicts N2(M1)p ≤ P2.
(b) P2 ∩ N2 = 1: Since P2N2 ≤ S

(2)
p N2, then |P2N2|||S(2)

p N2|. It’s easy to prove
|S(2)

p ∩ N2||p , which implies |N2|p ≤ p. If |N2|p = 1, by Lemma 2.4 (2) and induction, we
have G/N2 ∈ U#

p . Therefore, G ∈ U#
p , a contradiction. Now we consider |N2|p = p. Since

P2 ∩ N2 = 1, so (M1)p ∩ N2 = 1. Hence, we have N2 � M1. Further, G = N2M1. Let
(N2 ∩ M1)p be a Sylow p-subgroup of N2 ∩ M1. There exists an element x ∈ M1 such that
x(N2 ∩ M1)px−1 ≤ (M1)p ≤ P2. Since x(N2 ∩ M1)px−1 ≤ N2, thus x(N2 ∩ M1)px−1 ≤
P2 ∩ N2 = 1. Hence, |N2 ∩ M1|p = 1. It follows from |G|p = |N2|p|M1|p

|N2∩M1|p = |N1||M1|p that
|N1| = |N2|p = p. Therefore, G ∈ U#

p , a contradiction.
(2) P1 ∩ N1 = 1.
Using the same method described in (b), we can deduce that |N1|p ≤ p. If |N1|p = 1,

by Lemma 2.4 (2) and induction, we have G/N1 ∈ U#
p . Thus, G ∈ U#

p , a contradiction.
Now we may assume that |N1|p = p and |G|p > p. Let (N1)p be a Sylow p-subgroup of N1.
Thus, there exists a Sylow p-subgroup S

(3)
p of G and a maximal subgroup P3 of S

(3)
p such

that (N1)p ≤ P3 l S
(3)
p . By hypothesis, we can pick a minimal normal subgroup N3 of G

that satisfies either P3N3 = P3 or P3 ∩ N3 = 1. The former case is clearly impossible by
case (1). We can deduce that |N3|p = p from the latter case. If N3 ≤ Φ(G), then |N3| = p.
By the induction, we have G/N3 ∈ U#

p . Hence, G ∈ U#
p , a contradiction. Now we have

N3 � Φ(G). Then there exists a maximal subgroup M
′
3 of G such that G = N3M

′
3.

We set that (M ′
3)p is a Sylow p-subgroup of M

′
3. Noticing that |N3|p = p, we can

immediately get that (M ′
3)p is a Sylow p-subgroup of G or (M ′

3)p is a maximal subgroup of
S

(4)
p , where S

(4)
p ∈ Sylp(G). If (M ′

3)p is a Sylow p-subgroup of G, then we get M
′
3 ∈ U#

p by
using the induction. It is easy to prove that G/N3 ∼= M

′
3/M

′
3∩N3 ∈ U#

p , and therefore G ∈
U#

p , a contradiction. If (M ′
3)p is a maximal subgroup of S

(4)
p , by hypothesis, (M ′

3)p is semi-
cover-avoiding in G. Hence, there exists a chief series 1 = G0 < G1 < · · · < Gt−1 < Gt = G
such that either (M ′

3)pGi = (M ′
3)pGi−1 or (M ′

3)p∩Gi = (M ′
3)p∩Gi−1 for every i = 1, 2 · · · t.

It’s clear that 1 = G0∩M
′
3 ≤ G1∩M

′
3 ≤ · · · ≤ Gt−1∩M

′
3 ≤ Gt∩M

′
3 = M

′
3 is a normal series

of M
′
3. If (M ′

3)pGi = (M ′
3)pGi−1, then we have that (M ′

3)p(Gi ∩ M
′
3) = (M ′

3)p(Gi−1 ∩ M
′
3),

which means Gi ∩ M
′
3/Gi−1 ∩ M

′
3 is a p-group. If (M ′

3)p ∩ Gi = (M ′
3)p ∩ Gi−1, then

(M ′
3)p ∩ (Gi ∩M

′
3) = (M ′

3)p ∩ (Gi−1 ∩M
′
3), which implies Gi ∩M

′
3/Gi−1 ∩M

′
3 is a p

′-group.
In summary, we have M

′
3 is p-solvable. Thus, G/N3 ∼= M

′
3/M

′
3 ∩ N3 is p-solvable. Hence,

G is p-solvable and therefore |N3| = p. By induction, G/N3 ∈ U#
p , thus G ∈ U#

p , a
contradiction. Now our proof is complete. �

Theorem 3.10. Let G be a group. If every 2-maximal subgroup of each Sylow p-subgroup
of G is semi-cover-avoiding in G, then G ∈ U#

p2.

Proof. We suppose that the theorem is not true and let G be a counterexample with the
minimal order. We will complete our proof in the following steps.

We assert that G is not a simple group. If not, then G/1 would be the only chief factor
of G. Let Sp be a Sylow p-subgroup of G and P a 2-maximal subgroup of Sp. Then by
hypothesis, we have either PG = P or P ∩G = 1. Obviously, the former case is impossible.
The latter case means P = 1. Thus, |G|p = p2. Therefore, G ∈ U#

p2 , a contradiction.
Let S

(a)
p be a Sylow p-subgroup of G and P11 a 2-maximal subgroup of S

(a)
p . By

hypothesis, we can pick a minimal normal subgroup N11 of G such that either P11N11 = P11
or P11 ∩ N11 = 1. Next we will consider the two cases separately.
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(1) P11N11 = P11.
It’s clear to see that N11 ≤ P11. By using the Lemma 2.4(1) and induction, we have

G/N11 ∈ U#
p2 . Obviously, N11 � Φ(G). Otherwise, G ∈ U#

p2 , a contradiction. Hence we
can choose a maximal subgroup M11 of G that holds G = N11M11 and N11 ∩ M11 = 1.
Noticing that |G|p = |N11||M11|p, we can see that 1 < |M11|p < |G|p. Let (M11)p be a
Sylow p-subgroup of M11. Thus there exists a Sylow p-subgroup S

(b)
p of G and a maximal

subgroup P1 of S
(b)
p such that (M11)p ≤ P1. If (M11)p = P1, we can immediately get

|N11| = p from |G|p = |N11||M11|p. Thus, G ∈ U#
p2 , a contradiction. Hence, (M11)p < P1

and therefore there exist a maximal subgroup P12 of P1 such that (M11)p ≤ P12. Then,
by hypothesis, we can pick a minimal normal subgroup N12 of G that satisfies either
P12N12 = P12 or P12 ∩ N12 = 1. Next we will consider the two cases separately.

(a) P12N12 = P12: Obviously, N12 ≤ P12. By Lemma 2.4 (1) the induction, we have
G/N12 ∈ U#

p2 . We claim that N11 = N12. If not, by the minimality of N11, we have
N11 ∩ N12 = 1. It’s easy to prove N11N12/N11 is a minimal normal subgroup of G/N11.
It follows from G/N11 ∈ U#

p2 that |N11N12/N11|p ≤ p2 or N11N12/N11 ≤ Φ(G/N11). Since
N12 ∼= N11N12/N11, then we get |N12|p ≤ p2 from the former case. Therefore, G ∈ U#

p2 ,
a contradiction. By Lemma 2.10, we can deduce that N11N12 ≤ Φ(G)N11 from the latter
case. Meanwhile, N11N12 ≤ Op(G). Therefore we have N11N12 ≤ Φ(G)N11 ∩ Op(G) =
(Φ(G)∩Op(G))N11. We claim that Φ(G)∩Op(G) = 1. If not, there exists a minimal normal
subgroup N of G such that N ≤ Φ(G) ∩ Op(G). Since N ≤ Op(G), therefore G/N ∈ U#

p2

by induction. Noticing that N ≤ Φ(G), we see that G ∈ U#
p2 , a contradiction. Now we

have N11N12 ≤ N11, which is impossible. Because N11(M11)p is a Sylow p-subgroup of G

and N11 = N12, so N12(M11)p ∈ Sylp(G), which contradicts N12(M11)p ≤ P12 < S
(b)
p .

(b) P12 ∩N12 = 1: Using the same method described in Theorem 3.9(b), we get |N12|p ≤
p2. Since P12 ∩ N12 = 1, thus (M11)p ∩ N12 = 1, which implies that N12 � M11. Hence
we have G = N12M11. Using the argument similar to the Theorem 3.9(b), we have
|N12 ∩ M11|p = 1. Noticing that |G|p = |N12|p|M11|p

|N12∩M11|p = |N11||M11|p, we can see that
|N11| = |N12|p ≤ p2. Hence, G ∈ U#

p2 , a contradiction.
(2) P11 ∩ N11 = 1.
It’s easy to know that |N11|p ≤ p2. Let’s first discuss the quantitative relationship

between |N11|p and |G|p. If |N11|p = |G|p, then |G|p ≤ p2. Hence G ∈ U#
p2 , a contradiction;

If p|N11|p = |G|p, then we know that |G/N11|p = p. Hence, G/N11 ∈ U#
p2 , and therefore

G ∈ U#
p2 , a contradiction; Next we consider p|N11|p < |G|p. Let (N11)p be a Sylow p-

subgroup of N11. Obviously, there exists a Sylow p-subgroup S
(c)
p of G and a 2-maximal

subgroup P13 of S
(c)
p such that (N11)p ≤ P13. Then, by hypothesis, we can choose a

minimal normal subgroup N13 of G such that P13N13 = P13 or P13 ∩ N13 = 1. The former
case is impossible by case (1). Next we focus on the latter case. We also have |N13|p ≤ p2.
If N13 ≤ Φ(G), then |N13| ≤ p2. By using the induction, we have G/N13 ∈ U#

p2 . Hence,
G ∈ U#

p2 , a contradiction. Therefore, N13 � Φ(G). There exists a maximal subgroup M
′
13

of G such that G = N13M
′
13.

We set (M ′
13)p is a Sylow p-subgroup of M

′
13 and |G|p = pn, where n ∈ N . Since

|N13|p ≤ p2 and the relation between the order of maximal subgroup and 2-maximal
subgroup of p-group, then we have |(M ′

13)p| = pn, pn−1 or pn−2. If |(M ′
13)p| = pn, then

(M ′
13)p is a Sylow p-subgroup of G. By using the induction, we have M

′
13 ∈ U#

p2 . Since
G/N13 ∼= M

′
13/M

′
13 ∩ N13, then G/N13 ∈ U#

p2 . Therefore G ∈ U#
p2 , a contradiction. If
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|(M ′
13)p| = pn−1, then (M ′

13)p is a maximal subgroup of S
(d)
p where S

(d)
p ∈ Sylp(G). It’s

easy to prove that M
′
13 ∈ U#

p by Theorem 3.9. Because G/N13 ∼= M
′
13/M

′
13 ∩ N13, thus

we have G/N13 ∈ U#
p ⊆ U#

p2 . Hence G ∈ U#
p2 , a contradiction. If |(M ′

13)p| = pn−2, then
(M ′

13)p is a 2-maximal subgroup of S
(e)
p where S

(e)
p ∈ Sylp(G). Then by hypothesis, we

know that (M ′
13)p is a semi-cover-avoiding subgroup of G. Similarly to Theorem 3.9(2),

we have that M
′
13 is p-solvable. Thus, G/N13 ∼= M

′
13/M

′
13 ∩ N13 is p-solvable. Hence, G is

p-solvable and therefore |N13| ≤ p2. By using the induction, we have G/N13 ∈ U#
p2 . Thus,

G ∈ U#
p2 , a contradiction. Now our proof is complete. �

Acknowledgment. We are grateful to the editor and anonymous reviewers for their
valuable comments. This research is supported by NSFC(Grant # 11871062), NSFC-
RFBR(Grant # 12011530061), the Natural Science Foundation of Jiangsu Province (Grant
# BK20181451), and the NSF of the JiangSu Higher Education Institutions (Grant #
22KJB110024).

References
[1] M. Bianchi, A. G. B. Mauri and P. Hauck, On finite groups with nilpotent Sylow-

normalizers, Arch. Math. 47 (3), 193-197, 1986.
[2] K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin-New York,

1992.
[3] Y. Fan, X. Guo and K. P. Shum, Remarks on two generalizations of normality of

subgroups, Chinese J. Contemp. Math. 27 (2), 139-146, 2006.
[4] W. Guo, The Theory of Classes of Groups, Science Press-Kluwer Academic Publish-

ers, Beijing-New York-Dordrecht-Boston-london, 2000.
[5] X. Guo and K. P. Shum, Cover-avoidance properties and the structure of finite groups,

J. Pure Appl. Algebra 181 (2-3), 297-308, 2003.
[6] X. Guo, J. Wang and K. P. Shum, On semi-cover-avoiding maximal subgroups and

solvability of finite groups, Comm. Algebra, 34 (9), 3235-3244, 2006.
[7] B. Huppert, Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Z.

60, 409-434, 1954.
[8] M. N. Konovalova, V. S. Monakhov and I. L. Sokhor, On 2-maximal subgroups of

finite groups, Comm. Algebra, 50 (1), 96-103, 2022.
[9] S. Li, H. Liu and D. Liu, The solvability between finite groups and semi-subnormal-

cover-avoidance subgroups, J. Math. 37 (6), 1303-1308, 2017.
[10] L. Miao and J. Zhang, On a class of non-solvable groups, J. Algebra, 496, 1-10, 2018.
[11] Y. Wang, L. Miao, Z. Gao and W. Liu, The influence of second maximal subgroups

on the generalized p-solvability of finite groups, Comm. Algebra, 50 (6), 2584-2591,
2022.


